

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Fleet Documentation

Welcome to the documentation for the Kolide Fleet osquery fleet manager.

	If you’re interested in using the fleetctl CLI to manage your osquery fleet, see the [CLI Documentation](./cli/README.md).

	Resources for deploying osquery to hosts, deploying the Fleet server, installing Fleet’s infrastructure dependencies, etc. can all be found in the [Infrastructure Documentation](./infrastructure/README.md).

	If you are interested in accessing the Fleet REST API in order to programmatically interact with your osquery installation, please see the [API Documentation](./api/README.md).

	Information about using the Fleet web dashboard can be found in the [Dashboard Documentation](./dashboard/README.md).

	Architecturally significant decisions are documented in the [Architecture Documentation](./architecture/README.md).

	Finally, if you’re interested in interacting with the Fleet source code, you will find information on modifying and building the code in the [Development Documentation](./development/README.md).

If you have any questions, please don’t hesitate to [File a GitHub issue](https://github.com/kolide/fleet/issues) or [join us on Slack](https://osquery.slack.com/join/shared_invite/zt-h29zm0gk-s2DBtGUTW4CFel0f0IjTEw#/). You can find us in the #kolide channel.

API Documentation

Kolide Fleet is powered by a Go API server which serves three types of endpoints:

	Endpoints starting with /api/v1/osquery/ are osquery TLS server API endpoints. All of these endpoints are used for talking to osqueryd agents and that’s it.

	Endpoints starting with /api/v1/kolide/ are endpoints to interact with the Fleet data model (packs, queries, scheduled queries, labels, hosts, etc) as well as application endpoints (configuring settings, logging in, session management, etc).

	All other endpoints are served the React single page application bundle. The React app uses React Router to determine whether or not the URI is a valid route and what to do.

Only osquery agents should interact with the osquery API, but we’d like to support the eventual use of the Fleet API extensively. The API is not very well documented at all right now, but we have plans to:

	Generate and publish detailed documentation via a tool built using [test2doc](https://github.com/adams-sarah/test2doc) (or similar).

	Release a JavaScript Fleet API client library (which would be derived from the [current](https://github.com/kolide/fleet/blob/master/frontend/kolide/index.js) JavaScript API client).

	Commit to a stable, standardized API format.

Fleetctl

Many of the operations that a user may wish to perform with an API are currently best performed via the [fleetctl](../cli/README.md) tooling. These CLI tools allow updating of the osquery configuration entities, as well as performing live queries.

Current API

The general idea with the current API is that there are many entities throughout the Fleet application, such as:

	Queries

	Packs

	Labels

	Hosts

Each set of objects follows a similar REST access pattern.

	You can GET /api/v1/kolide/packs to get all packs

	You can GET /api/v1/kolide/packs/1 to get a specific pack.

	You can DELETE /api/v1/kolide/packs/1 to delete a specific pack.

	You can POST /api/v1/kolide/packs (with a valid body) to create a new pack.

	You can PATCH /api/v1/kolide/packs/1 (with a valid body) to modify a specific pack.

Queries, packs, scheduled queries, labels, invites, users, sessions all behave this way. Some objects, like invites, have additional HTTP methods for additional functionality. Some objects, such as scheduled queries, are merely a relationship between two other objects (in this case, a query and a pack) with some details attached.

All of these objects are put together and distributed to the appropriate osquery agents at the appropriate time. At this time, the best source of truth for the API is the [HTTP handler file](https://github.com/kolide/fleet/blob/master/server/service/handler.go) in the Go application. The REST API is exposed via a transport layer on top of an RPC service which is implemented using a micro-service library called [Go Kit](https://github.com/go-kit/kit). If using the Fleet API is important to you right now, being familiar with Go Kit would definitely be helpful.

 # A Title Which Summarizes The Decision

Authors

	Your Name ([@username](https://github.com/marpaia))

> List all people that have contributed to the decision and can speak authoritatively about some critical aspect it.

Status

Accepted (March 15, 2018)

> This should be one of:
> - Proposal (the decision is being proposed and discussed (ie: in a PR))
> - Accepted (the decision has been agreed upon and is the current adopted decision)
> - Superseded (the decision has been superseded by a newer decision (include a link to the new decision))

Context

The context section outlines the set of conditions which have brought you here. You should outline what it is that you’re talking about and why this decision is being documented. Enumerate the context you have which has gone into this decision so that others understand not only the decision itself but why it was the best decision given the context of the situation.

If significant conversation on this topic happened in Slack or in a meeting, do your best to summarize the context. Include links to Slack logs, GitHub issues, Pull Request discussions, etc.

Decision

Summarize the decision that has been made and it’s immediate practical implications. This section should be brief. Save the story-telling for Context and Consequences.

Consequences

The closing section of the document explains what the consequences of this decision will be.

Explain what’s going to happen immediately. If this is a new approach to an existing problem, perhaps a set of refactors will need to take place. If a new programming pattern is being agreed upon, perhaps developers will need to be able to reference some code snippets.

You should also explain the long-term maintainability and scale properties of the decision. Often times, a decision will introduce some new advantage, but nothing in life is without compromise. Explain what we should watch out for as your decision is accepted. What are bottlenecks that you foresee with your solution. How will it fall over? We think about this during the decision making process so that our decisions have as few unexpected consequences as possible after they’re adopted.

 # Architecture Decisions

Architecturally significant changes to this project are documented as a collection of records. Documents are numbered sequentially and monotonically. If a decision is reversed, we will keep the old one around, but mark it as superseded (it’s still relevant to know that it was the decision, but is no longer the decision).

If you’d like to make a significant change to this program, copy [the template](./1970-01-01_template.md) and submit a PR which explains your proposal. Your proposal may accompany a working prototype, but significant decisions should be documented before there is significant development.

CLI Documentation

Kolide Fleet provides a server which allows you to manage and orchestrate an osquery deployment across of a set of workstations and servers. For certain use-cases, it makes sense to maintain the configuration and data of an osquery deployment in source-controlled files. It is also desirable to be able to manage these files with a familiar command-line tool. To facilitate this, Kolide Fleet includes a fleetctl CLI for managing osquery fleets in this way.

For more information, see:

	[Documentation on the file format](./file-format.md)

	[The setup guide for new CLI users](./setup-guide.md)

Inspiration

Inspiration for the fleetctl command-line experience as well as the file format has been principally derived from the [Kubernetes](https://kubernetes.io/) container orchestration tool. This is for a few reasons:

	Format Familiarity: At Kolide, we love Kubernetes and we think it is the future of production infrastructure management. We believe that many of the people that use this interface to manage Fleet will also be Kubernetes operators. By using a familiar command-line interface and file format, the cognitive overhead can be reduced since the operator is already familiar with how these tools work and behave.

	Established Best Practices: Kubernetes deployments can easily become very complex. Because of this, Kubernetes operators have an established set of best practices that they often follow when writing and maintaining config files. Some of these best practices and tips are documented on the [official Kubernetes website](https://kubernetes.io/docs/concepts/configuration/overview/#general-config-tips) and some are documented by [the community](https://www.mirantis.com/blog/introduction-to-yaml-creating-a-kubernetes-deployment/). Since the file format and workflow is so similar, we can re-use these best practices when managing Fleet configurations.

fleetctl - The CLI

The fleetctl tool is heavily inspired by the [kubectl](https://kubernetes.io/docs/user-guide/kubectl-overview/) tool. If you are familiar with kubectl, this will all feel very familiar to you. If not, some further explanation would likely be helpful.

Fleet exposes the aspects of an osquery deployment as a set of “objects”. Objects may be a query, a pack, a set of configuration options, etc. The documentation for [Declarative Management of Kubernetes Objects Using Configuration Files](https://kubernetes.io/docs/tutorials/object-management-kubectl/declarative-object-management-configuration/) says the following about the object lifecycle:

> Objects can be created, updated, and deleted by storing multiple object configuration files in a directory and using kubectl apply to recursively create and update those objects as needed.

Similarly, Fleet objects can be created, updated, and deleted by storing multiple object configuration files in a directory and using fleetctl apply to recursively create and update those objects as needed.

Using goquery with fleetctl

Fleet and fleetctl have built in support for [goquery](https://github.com/AbGuthrie/goquery).

Use fleetctl goquery to open up the goquery console. When used with Fleet, goquery can connect using either a hostname or UUID.

`
$./build/fleetctl get hosts
+--------------------------------------+--------------+----------+---------+
| UUID | HOSTNAME | PLATFORM | STATUS |
+--------------------------------------+--------------+----------+---------+
| 192343D5-0000-0000-B85B-58F656BED4C7 | 6523f89187f8 | centos | online |
+--------------------------------------+--------------+----------+---------+
$./build/fleetctl goquery
goquery> .connect 6523f89187f8
Verified Host(6523f89187f8) Exists.
.
goquery | 6523f89187f8:> .query select unix_time from time
...

| host_hostname | unix_time |

| 6523f89187f8 | 1579842569 |

goquery | 6523f89187f8:>
`

 # Configuration File Format

A Fleet configuration is defined using one or more declarative “messages” in yaml syntax. Each message can live in it’s own file or multiple in one file, each separated by —. Each file/message contains a few required top-level keys:

	apiVersion - the API version of the file/request

	spec - the “data” of the request

	`kind ` - the type of file/object (i.e.: pack, query, config)

The file may optionally also include some metadata for more complex data types (i.e.: packs).

When you reason about how to manage these config files, consider following the [General Config Tips](https://kubernetes.io/docs/concepts/configuration/overview/#general-config-tips) published by the Kubernetes project. Some of the especially relevant tips are included here as well:

	When defining configurations, specify the latest stable API version.

	Configuration files should be stored in version control before being pushed to the cluster. This allows quick roll-back of a configuration if needed. It also aids with cluster re-creation and restoration if necessary.

	Group related objects into a single file whenever it makes sense. One file is often easier to manage than several. See the [config-single-file.yml](../../examples/config-single-file.yml) file as an example of this syntax.

	Don’t specify default values unnecessarily – simple and minimal configs will reduce errors.

All of these files can be concatenated together into [one file](../../examples/config-single-file.yml) (seperated by —), or they can be in [individual files with a directory structure](../../examples/config-many-files) like the following:

`
|-- config.yml
|-- labels.yml
|-- packs
| `-- osquery-monitoring.yml
`-- queries.yml
`

Convert Osquery JSON

fleetctl includes easy tooling to convert osquery pack JSON into the
fleetctl format. Use fleetctl convert with a path to the pack file:

```
$ fleetctl convert -f test.json
—
apiVersion: v1
kind: pack
spec:


name: test
queries:
- description: “this is a test query”


interval: 10
name: processes
query: processes
removed: false





	targets:
	labels: null








—
apiVersion: v1
kind: query
spec:


name: processes
query: select * from processes




```

Osquery Queries

For especially long or complex queries, you may want to define one query in one file. Continued edits and applications to this file will update the query as long as the metadata.name does not change. If you want to change the name of a query, you must first create a new query with the new name and then delete the query with the old name. Make sure the old query name is not defined in any packs before deleting it or an error will occur.

```yaml
apiVersion: v1
kind: query
spec:


name: docker_processes
description: The docker containers processes that are running on a system.
query: select * from docker_container_processes;
support:


osquery: 2.9.0
platforms:



	linux


	darwin













```

To define multiple queries in a file, concatenate multiple query resources together in a single file with —. For example, consider a file that you might store at queries/osquery_monitoring.yml:

```yaml
apiVersion: v1
kind: query
spec:


name: osquery_version
description: The version of the Launcher and Osquery process
query: select launcher.version, osquery.version from kolide_launcher_info launcher, osquery_info osquery;
support:


launcher: 0.3.0
osquery: 2.9.0







—
apiVersion: v1
kind: query
spec:


name: osquery_schedule
description: Report performance stats for each file in the query schedule.
query: select name, interval, executions, output_size, wall_time, (user_time/executions) as avg_user_time, (system_time/executions) as avg_system_time, average_memory, last_executed from osquery_schedule;




—
apiVersion: v1
kind: query
spec:


name: osquery_info
description: A heartbeat counter that reports general performance (CPU, memory) and version.
query: select i.*, p.resident_size, p.user_time, p.system_time, time.minutes as counter from osquery_info i, processes p, time where p.pid = i.pid;




—
apiVersion: v1
kind: query
spec:


name: osquery_events
description: Report event publisher health and track event counters.
query: select name, publisher, type, subscriptions, events, active from osquery_events;




```

Query Packs

To define query packs, reference queries defined elsewhere by name. This is why the “name” of a query is so important. You can define many of these packs in many files.

```yaml
apiVersion: v1
kind: pack
spec:


name: osquery_monitoring
disabled: false
targets:



	labels:
	
	All Hosts












	queries:
	
	query: osquery_version
name: osquery_version_differential
interval: 7200


	query: osquery_version
name: osquery_version_snapshot
interval: 7200
snapshot: true


	query: osquery_schedule
interval: 7200
removed: false


	query: osquery_events
interval: 86400
removed: false


	query: osquery_info
interval: 600
removed: false











```

Host Labels

The following file describes the labels which hosts should be automatically grouped into. The label resource should include the actual SQL query so that the label is self-contained:

```yaml
apiVersion: v1
kind: label
spec:


name: slack_not_running
query: >


SELECT * from system_info
WHERE NOT EXISTS (


SELECT *
FROM processes
WHERE name LIKE “%Slack%”




);







```

Labels can also be “manually managed”. When defining the label, reference hosts
by hostname:

```yaml
apiVersion: v1
kind: label
spec:


name: Manually Managed Example
label_membership_type: manual
hosts:



	hostname1


	hostname2


	hostname3










```

Osquery Configuration Options

The following file describes options returned to osqueryd when it checks for configuration. See the [osquery documentation](https://osquery.readthedocs.io/en/stable/deployment/configuration/#options) for the available options. Existing options will be over-written by the application of this file.

```yaml
apiVersion: v1
kind: options
spec:



	config:
	
	options:
	distributed_interval: 3
distributed_tls_max_attempts: 3
logger_plugin: tls
logger_tls_endpoint: /api/v1/osquery/log
logger_tls_period: 10



	decorators:
	
	load:
	
	“SELECT version FROM osquery_info”


	“SELECT uuid AS host_uuid FROM system_info”






	always:
	
	“SELECT user AS username FROM logged_in_users WHERE user <> ‘’ ORDER BY time LIMIT 1”






	interval:
	3600: “SELECT total_seconds AS uptime FROM uptime”











	overrides:
	# Note configs in overrides take precedence over the default config defined
# under the config key above. Hosts receive overrides based on the platform
# returned by SELECT platform FROM os_version. In this example, the base
# config would be used for Windows and CentOS hosts, while Mac and Ubuntu
# hosts would receive their respective overrides. Note, these overrides are
# NOT merged with the top level configuration.
platforms:



	darwin:
	
	options:
	distributed_interval: 10
distributed_tls_max_attempts: 10
logger_plugin: tls
logger_tls_endpoint: /api/v1/osquery/log
logger_tls_period: 300
disable_tables: chrome_extensions
docker_socket: /var/run/docker.sock



	file_paths:
	
	users:
	
	/Users/%/Library/%%


	/Users/%/Documents/%%






	etc:
	
	/etc/%%














	ubuntu:
	
	options:
	distributed_interval: 10
distributed_tls_max_attempts: 3
logger_plugin: tls
logger_tls_endpoint: /api/v1/osquery/log
logger_tls_period: 60
schedule_timeout: 60
docker_socket: /etc/run/docker.sock



	file_paths:
	
	homes:
	
	/root/.ssh/%%


	/home/%/.ssh/%%






	etc:
	
	/etc/%%






	tmp:
	
	/tmp/%%










	exclude_paths:
	
	homes:
	
	/home/not_to_monitor/.ssh/%%






	tmp:
	
	/tmp/too_many_events/










	decorators:
	
	load:
	
	“SELECT * FROM cpuid”


	“SELECT * FROM docker_info”






	interval:
	3600: “SELECT total_seconds AS uptime FROM uptime”























```

Auto Table Construction

You can use Kolide Fleet to query local SQLite databases as tables. For more information on creating ATC configuration from a SQLite database, see the [Osquery Automatic Table Construction documentation](https://osquery.readthedocs.io/en/stable/deployment/configuration/#automatic-table-construction)

If you already know what your ATC configuration needs to look like, you can add it to an options config file:

```yaml
apiVersion: v1
kind: options
spec:



	overrides:
	
	platforms:
	
	darwin:
	
	auto_table_construction:
	
	tcc_system_entries:
	query: “select service, client, allowed, prompt_count, last_modified from access”
path: “/Library/Application Support/com.apple.TCC/TCC.db”
columns:



	“service”


	“client”


	“allowed”


	“prompt_count”


	“last_modified”






























```

Fleet Configuration Options
The following file describes configuration options applied to the Fleet server.

```yaml
apiVersion: v1
kind: config
spec:



	host_expiry_settings:
	host_expiry_enabled: true
host_expiry_window: 10



	host_settings:
	# “additional” information to collect from hosts along with the host
# details. This information will be updated at the same time as other host
# details and is returned by the API when host objects are returned. Users
# must take care to keep the data returned by these queries small in
# order to mitigate potential performance impacts on the Fleet server.
additional_queries:


time: select * from time
macs: select mac from interface_details






	org_info:
	org_logo_url: “https://example.org/logo.png”
org_name: Example Org



	server_settings:
	kolide_server_url: https://fleet.example.org:8080



	smtp_settings:
	authentication_method: authmethod_plain
authentication_type: authtype_username_password
domain: example.org
enable_smtp: true
enable_ssl_tls: true
enable_start_tls: true
password: supersekretsmtppass
port: 587
sender_address: fleet@example.org
server: mail.example.org
user_name: test_user
verify_ssl_certs: true



	sso_settings:
	enable_sso: false
entity_id: 1234567890
idp_image_url: https://idp.example.org/logo.png
idp_name: IDP Vendor 1
issuer_uri: https://idp.example.org/SAML2/SSO/POST
metadata: “<md:EntityDescriptor entityID=”https://idp.example.org/SAML2”> … /md:EntityDescriptor>”
metadata_url: https://idp.example.org/idp-meta.xml








```
SMTP Authentication

Warning: Be careful not to store your SMTP credentials in source control. It is recommended to set the password through the web UI or fleetctl and then remove the line from the checked in version. Fleet will leave the password as-is if the field is missing from the applied configuration.

The following options are available when configuring SMTP authentication:

	smtp_settings.authentication_type
- authtype_none - use this if your SMTP server is open
- authtype_username_password - use this if your SMTP server requires authentication with a username and password

	smtp_settings.authentication_method - required with authentication type authtype_username_password
- authmethod_cram_md5
- authmethod_login
- authmethod_plain

Enroll Secrets

The following file shows how to configure enroll secrets. Note that secrets can be changed or made inactive, but not deleted. Hosts may not enroll with inactive secrets.

The name of the enroll secret used to authenticate is stored with the host and is included with API results.

```yaml
apiVersion: v1
kind: enroll_secret
spec:


secrets:
- active: true


name: default
secret: RzTlxPvugG4o4O5IKS/HqEDJUmI1hwBoffff





	active: true
name: new_one
secret: reallyworks


	active: false
name: inactive_secret
secret: thissecretwontwork!







```


 # Setting Up Fleet via the CLI

This document walks through setting up and configuring Fleet via the CLI. If you already have a running fleet instance, skip ahead to [Logging In To An Existing Fleet Instance](#logging-in-to-an-existing-fleet-instance) to configure the fleetctl CLI.

This guide illustrates:

	A minimal CLI workflow for managing an osquery fleet

	The set of API interactions that are required if you want to perform remote, automated management of a Fleet instance

Running Fleet

For the sake of this tutorial, I will be using the local development Docker Compose infrastructure to run Fleet locally. This is documented in some detail in the [developer documentation](../development/development-infrastructure.md), but the following are the minimal set of commands that you can run from the root of the repository (assuming that you have a working Go/JavaScript toolchain installed along with Docker Compose):

`
docker-compose up -d
make deps
make generate
make
./build/fleet prepare db
./build/fleet serve --auth_jwt_key="insecure"
`

The fleet serve command will be the long running command that runs the Fleet server.

fleetctl config

At this point, the MySQL database doesn’t have any users in it. Because of this, Fleet is exposing a one-time setup endpoint. Before we can hit that endpoint (by running fleetctl setup), we have to first configure the local fleetctl context.

Now, since our Fleet instance is local in this tutorial, we didn’t get a valid TLS certificate, so we need to run the following to configure our Fleet context:

`
$ fleetctl config set --address https://localhost:8080 --tls-skip-verify
[+] Set the address config key to "https://localhost:8080" in the "default" context
[+] Set the tls-skip-verify config key to "true" in the "default" context
`

Now, if you were connecting to a Fleet instance for real, you wouldn’t want to skip TLS certificate verification, so you might run something like:

`
$ fleetctl config set --address https://fleet.corp.example.com
[+] Set the address config key to "https://fleet.corp.example.com" in the "default" context
`

fleetctl setup

Now that we’ve configured our local CLI context, lets go ahead and create our admin account:

`
$ fleetctl setup --email mike@arpaia.co
Password:
[+] Fleet setup successful and context configured!
`

It’s possible to specify the password via the –password flag or the $PASSWORD environment variable, but be cautious of the security implications of such an action. For local use, the interactive mode above is the most secure.

Connecting a Host

For the sake of this tutorial, I’m going to be using Kolide’s osquery launcher to start osquery locally and connect it to Fleet. To learn more about connecting osquery to Fleet, see the [Adding Hosts to Fleet](../infrastructure/adding-hosts-to-fleet.md) documentation.

To get your osquery enroll secret, run the following:

`
$ fleetctl get enroll-secret
E7P6zs9D0mvY7ct08weZ7xvLtQfGYrdC
`

You need to use this secret to connect a host. If you’re running Fleet locally, you’d run:

```
launcher 


–hostname localhost:8080 –enroll_secret E7P6zs9D0mvY7ct08weZ7xvLtQfGYrdC –root_directory=$(mktemp -d) –insecure




```

Query Hosts

To run a simple query against all hosts, you might run something like the following:

`
$ fleetctl query --query 'select * from osquery_info;' --labels='All Hosts' > results.json
⠂ 100% responded (100% online) | 1/1 targeted hosts (1/1 online)
^C
`

When the query is done (or you have enough results), CTRL-C and look at the results.json file:

```json
{


“host”: “marpaia”,
“rows”: [



	{
	“build_distro”: “10.13”,
“build_platform”: “darwin”,
“config_hash”: “d7cafcd183cc50c686b4c128263bd4eace5d89e1”,
“config_valid”: “1”,
“extensions”: “active”,
“host_hostname”: “marpaia”,
“instance_id”: “37840766-7182-4a68-a204-c7f577bd71e1”,
“pid”: “22984”,
“start_time”: “1527031727”,
“uuid”: “B312055D-9209-5C89-9DDB-987299518FF7”,
“version”: “3.2.3”,
“watcher”: “-1”





}




]





}

## Update Osquery Options

By default, each osquery node will check in with Fleet every 10 seconds. Let’s say, for testing, you want to increase this to every 2 seconds. If this is the first time you’ve ever modified osquery options, let’s download them locally:

`
fleetctl get options > options.yaml
`

The options.yaml file will look something like this:

```yaml
apiVersion: v1
kind: options
spec:

	config:
	
	decorators:
	load:
- SELECT uuid AS host_uuid FROM system_info;
- SELECT hostname AS hostname FROM system_info;

	options:
	disable_distributed: false
distributed_interval: 10
distributed_plugin: tls
distributed_tls_max_attempts: 3
distributed_tls_read_endpoint: /api/v1/osquery/distributed/read
distributed_tls_write_endpoint: /api/v1/osquery/distributed/write
logger_plugin: tls
logger_tls_endpoint: /api/v1/osquery/log
logger_tls_period: 10
pack_delimiter: /

overrides: {}


```

Let’s edit the file so that the distributed_interval option is 2 instead of 10. Save the file and run:

`
fleetctl apply -f ./options.yaml
`

Now run a live query again. You should notice results coming back more quickly.

# Logging In To An Existing Fleet Instance

If you have an existing Fleet instance (version 2.0.0 or above), then simply run fleetctl login (after configuring your local CLI context):

```
$ fleetctl config set –address https://fleet.corp.example.com
[+] Set the address config key to “https://fleet.corp.example.com” in the “default” context

$ fleetctl login
Log in using the standard Fleet credentials.
Email: mike@arpaia.co
Password:
[+] Fleet login successful and context configured!
```

Once your local context is configured, you can use the above fleetctl normally. See fleetctl –help for more information.

## Logging In with SAML (SSO) Authentication

Users that authenticate to Fleet via SSO should retrieve their API token from the UI and set it manually in their fleetctl configuration (instead of logging in via fleetctl login).


	Go to the “Account Settings” page in Fleet (https://fleet.corp.example.com/settings). Click the “Get API Token” button to bring up a modal with the API token.


	Set the API token in the ~/.fleet/config file. The file should look like the following:




```
contexts:

	default:
	address: https://fleet.corp.example.com
email: example@example.com
token: your_token_here


```

Note the token can also be set with fleetctl config set –token, but this may leak the token into a user’s shell history.





            

          

      

      

    

  

    
      
          
            
  
Dashboard Documentation

Kolide Fleet is an application that allows you to take advantage of the power of osquery in order to maintain constant insight into the state of your infrastructure (security, health, stability, performance, compliance, etc). The dashboard documentation contains documents on the following topics:

## Using the Kolide Fleet Dashboard


	For information on running osquery queries on hosts in your infrastructure, you can refer to the [Running Queries](./running-queries.md) page.


	For information on configuring SSO for logging in to Fleet, see the guide on [Configuring Single Sign On](./single-sign-on.md).








            

          

      

      

    

  

    
      
          
            
  
Running Queries

The Fleet application allows you to query hosts which you have installed osquery on. To run a new query, use the “Query” sidebar and select “New Query”. From this page, you can compose your query, view SQL table documentation via the sidebar, select arbitrary hosts (or groups of hosts), and execute your query. As results are returned, they will populate the interface in real time. You can use the integrated filtering tool to perform useful initial analytics and easily export the entire dataset for offline analysis.

![Distributed new query with local filter](../images/distributed-new-query-with-local-filter.png)

After you’ve composed a query that returns the information you were looking for, you may choose to save the query. You can still continue to execute the query on whatever set of hosts you would like after you have saved the query.

![Distributed saved query with local filter](../images/distributed-saved-query-with-local-filter.png)

Saved queries can be accessed if you select “Manage Queries” from the “Query” section of the sidebar. Here, you will find all of the queries you’ve ever saved. You can filter the queries by query name, so name your queries something memorable!

![Manage Queries](../images/manage-queries.png)

To learn more about scheduling queries so that they run on an on-going basis, see the [Scheduling Queries](./scheduling-queries.md) guide.





            

          

      

      

    

  

    
      
          
            
  
Scheduling Queries

As discussed in the [Running Queries Documentation](./running-queries.md), you can use the Fleet application to create, execute, and save osquery queries. You can organize these queries into “Query Packs”. To view all saved packs and perhaps create a new pack, select “Manage Packs” from the “Packs” sidebar. Packs are usually organized by the general class of instrumentation that you’re trying to perform.

![Manage Packs](../images/manage-packs.png)

If you select a pack from the list, you can quickly enable and disable the entire pack, or you can configure it further.

![Manage Packs With Pack Selected](../images/manage-packs-with-pack-selected.png)

When you edit a pack, you can decide which targets you would like to execute the pack. This is a similar selection experience to the target selection process that you use to execute a new query.

![Edit Pack Targets](../images/edit-pack-targets.png)

To add queries to a pack, use the right-hand sidebar. You can take an existing scheduled query and add it to the pack. You must also define a few key details such as:


	interval: how often should the query be executed?


	logging: which osquery logging format would you like to use?


	platform: which operating system platforms should execute this query?


	minimum osquery version: if the table was introduced in a newer version of osquery, you may want to ensure that only sufficiently recent version of osquery execute the query.


	shard: from 0 to 100, what percent of hosts should execute this query?




![Schedule Query Sidebar](../images/schedule-query-sidebar.png)

Once you’ve scheduled queries and curated your packs, you can read our guide to [Working With Osquery Logs](../infrastructure/working-with-osquery-logs.md).





            

          

      

      

    

  

    
      
          
            
  
Configuring Single Sign On

Fleet supports SAML single sign on capability. This feature is convenient for users and offloads responsibility for user authentication to a third party identity provider such as Salesforce or Onelogin. Fleet supports the SAML Web Browser SSO Profile using the HTTP Redirect Binding. Fleet only supports SP-initiated SAML login and not IDP-initiated login.

## Identity Provider (IDP) Configuration

Several items are required to configure an IDP to provide SSO services to Fleet. Note that the names of these items may vary from provider to provider and may not conform to the SAML spec. Individual users must also be setup on the IDP before they can sign in to Fleet. The particulars of setting up the connected application (Fleet) and users will vary for different identity providers but will generally require the following information.


	_Assertion Consumer Service_ - This is the call back URL that the identity provider




will use to send security assertions to Fleet. In Okta, this field is called Single sign on URL. The value that you supply will be a fully qualified URL
consisting of your Fleet web address and the callback path /api/v1/kolide/sso/callback. For example,
if your Fleet web address is https://fleet.acme.org, then the value you would
use in the identity provider configuration would be:


`
https://fleet.acme.org/api/v1/kolide/sso/callback
`





	_Entity ID_ - This value is a URI that you define. It identifies your Fleet instance as the service provider that issues authorization requests. The value must exactly match the




Entity ID that you define in the Fleet SSO configuration.


	_Name ID Format_ - The value should be urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress. This may be shortened in the IDP setup to something like email or EmailAddress.


	_Subject Type (Application username in Okta)_ - username.

#### Example Salesforce IDP Configuration

![Example Salesforce IDP Configuration](../images/salesforce-idp-setup.png)

#### Example Okta IDP Configuration

![Example Okta IDP Configuration](../images/okta-idp-setup.png)





The IDP will generate an issuer URI and a metadata URL that will be used to configure
Fleet as a service provider.

## Fleet SSO Configuration

A user must be an admin to configure Fleet for SSO.  The SSO configuration is
found in App Settings. If your IDP supports dynamic configuration, like Okta, you only need to provide an _Identity Provider Name_ and _Entity ID_, then paste a link in the metadata URL field. Otherwise, the following values are required.


	_Identity Provider Name_ - A human friendly name of the IDP.


	_Entity ID_ - A URI that identifies your Fleet instance as the issuer of authorization




requests. Assuming your company name is Acme, an example might be fleet.acme.org although
the value could be anything as long as it is unique to Fleet as a service provider
and matches the entity provider value used in the IDP configuration.


	_Issuer URI_ - This value is obtained from the IDP.


	_Metadata URL_ - This value is obtained from the IDP and is used by Fleet to




issue authorization requests to the IDP.


	_Metadata_ - If the IDP does not provide a metadata URL, the metadata must




be obtained from the IDP and entered. Note that the metadata URL is preferred if
the IDP provides metadata in both forms.

### Example Fleet SSO Configuration

![Example SSO Configuration](../images/sso-setup.png)

## Creating SSO Users in Fleet

When an admin invites a new user to Fleet, they may select the Enable SSO option. The
SSO enabled users will not be able to sign in with a regular user ID and password. It is
strongly recommended that at least one admin user is set up to use the traditional password
based log in so that there is a fallback method for logging into Fleet in the event of SSO
configuration problems.

[SAML Bindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf)

[SAML Profiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf)





            

          

      

      

    

  

    
      
          
            
  
Development Documentation

The Fleet application is a Go API server which serves a React/Redux single-page application for the frontend. The development documentation contains documents on the following topics:

## Frequently Asked Questions

For FAQs on common Fleet problems, see the [FAQ](./faq.md).

## Building and contributing code


	For documentation on building the Fleet source code, see the [Building The Code](./building-the-code.md) guide.


	To learn about database migrations and populating the application with default seed data, see the [Database Migrations](./database-migrations.md) document.




## Running tests

For information on running the various tests that Fleet application contains (JavaScript unit tests, Go unit tests, linters, integration tests, etc), see the [Testing](./testing.md) guide.

## Using development infrastructure and tooling

The Fleet application uses a lot of docker tooling to make setting up a development environment quick and easy. For information on this, see the [Development Infrastructure](./development-infrastructure.md) document.

#### Setting up a Launcher environment

It’s helpful to have a local build of the Launcher and it’s included package building tools when reasoning about connecting the Launcher to Fleet. Both Launcher and Fleet have a similar repository interface that should be familiar.

If you have installed Go, but have never used it before (ie: you have not configured a $GOPATH environment variable), then there’s good news: you don’t need to do this anymore. By default, the Go compiler now looks in ~/go for your Go source code. So, let’s clone the launcher directory where it’s supposed to go:

`
mkdir -p $GOPATH/src/github.com/kolide
cd $GOPATH/src/github.com/kolide
git clone git@github.com:kolide/launcher.git
cd launcher
`

Once you’re in the root of the repository (and you have a recent Go toolchain installed), you can follow the directions included with the Launcher repository:

`
make deps
make generate
make test
make
./build/launcher --help
`

## Releasing Fleet

The release process for Fleet is documented in [release.md](./release.md).





            

          

      

      

    

  

    
      
          
            
  
Building The Code

## Building the Code

Checkout this repository to $GOPATH/src/github.com/kolide/fleet. If you’re new to Go and you don’t know about $GOPATH, then check out the repo to $HOME/go/src/github.com/kolide/fleet. You will also need to install Go (1.9 or greater).


	[Go Documentation: Workspaces](https://golang.org/doc/code.html#Workspaces)




To setup a working local development environment, you must install the following minimum toolset:


	[Go](https://golang.org/dl/) (1.9 or greater)


	[Node.js](https://nodejs.org/en/download/current/) and [Yarn](https://yarnpkg.com/en/docs/install)


	[GNU Make](https://www.gnu.org/software/make/)


	[Docker](https://www.docker.com/products/overview#/install_the_platform)




If you’re using MacOS or Linux, Make should be installed by default. If you are using Windows, you will need to install it separately.

Once you have those minimum requirements, you will need to install Fleet’s dependent libraries. To do this, run the following from the root of the repository:

`
make deps
`

When pulling in new revisions to your working source tree, it may be necessary to re-run make deps if a new Go or JavaScript dependency was added.

## Generating the packaged JavaScript

To generate all necessary code (bundling JavaScript into Go, etc), run the following:

`
make generate
`

### Automatic rebuilding of the JavaScript bundle

Normally, make generate takes the JavaScript code, bundles it into a single bundle via Webpack, and inlines that bundle into a generated Go source file so that all of the frontend code can be statically compiled into the binary. When you build the code after running make generate, all of that JavaScript is included in the binary.

This makes deploying Fleet a dream, since you only have to worry about a single static binary. If you are working on frontend code, it is likely that you don’t want to have to manually re-run make generate and make build every time you edit JavaScript and CSS in order to see your changes in the browser. To solve this problem, before you build the Fleet binary, run the following command instead of make generate:

`
make generate-dev
`

Instead of reading the JavaScript from a inlined static bundle compiled within the binary, make generate-dev will generate a Go source file which reads the frontend code from disk and run Webpack in “watch mode”.

Note that when you run make generate-dev, Webpack will be watching the JavaScript files that were used to generate the bundle, so the process will be long lived. Depending on your personal workflow, you might want to run this in a background terminal window.

After you run make generate-dev, run make build to build the binary, launch the binary and you’ll be able to refresh the browser whenever you edit and save frontend code.

## Compiling the Fleet binary

Use go build to build the application code. For your convenience, a make command is included which builds the code:

`
make build
`

It’s not necessary to use Make to build the code, but using Make allows us to account for cross-platform differences more effectively than the go build tool when writing automated tooling. Use whichever you prefer.





            

          

      

      

    

  

    
      
          
            
  
Database Migrations

## Adding/Updating tables

Database schemas are managed by a series of migrations defined in go code. We use a customized version of the Goose migrations tool to handle these migrations.

Note: Once committed to the Fleet repo, table migrations should be considered immutable. Any changes to an existing table should take place in a new migration executing ALTERs.

From the project root run the following shell commands:

` bash
go get github.com/kolide/goose
cd server/datastore/mysql/migrations/tables
goose create AddColumnFooToUsers
`

Find the file you created in the migrations directory and edit it:


	delete the import line for goose: github.com/pressly/goose


	change goose.AddMigration(…) to MigrationClient.AddMigration(…)


	add your migration code




You can then update the database by running the following shell commands:

` bash
make build
build/fleet prepare db
`

## Populating the database with default data

Populating built in data is also performed through migrations. All table migrations are performed before any data migrations.

Note: Data migrations can be mutable. If tables are altered in a way that would render a data migration invalid (columns changed/removed), data migrations should be updated to comply with the new schema. Data migrations will not be re-run when they have already been run against a database, but they must be updated to maintain compatibility with a fresh DB.

From the project root run the following shell commands:

` bash
go get github.com/kolide/goose
cd server/datastore/mysql/migrations/data
goose create PopulateFoo
`

Proceed as for table migrations, editing and running the newly created migration file.





            

          

      

      

    

  

    
      
          
            
  
Development Infrastructure

## Starting the local development environment

To set up a canonical development environment via docker, run the following from the root of the repository:

`
docker-compose up
`

This requires that you have docker installed. At this point in time, automatic configuration tools are not included with this project.

#### Stopping the local development environment

If you’d like to shut down the virtual infrastructure created by docker, run the following from the root of the repository:

`
docker-compose down
`

#### Setting up the database tables

Once you docker-compose up and are running the databases, you can build the code and run the following command to create the database tables:

`
fleet prepare db
`

## Running Fleet using Docker development infrastructure

To start the Fleet server backed by the Docker development infrastructure, run the Fleet binary as follows:

`
fleet serve
`

By default, Fleet will try to connect to servers running on default ports on localhost.

If you’re using Docker via [Docker Toolbox](https://www.docker.com/products/docker-toolbox), you may have to modify the default values use the output of docker-machine ip instead of localhost. There is an example configuration file included in this repository to make this process easier for you.  Use the –config flag of the Fleet binary to specify the path to your config. See fleet –help for more options.





            

          

      

      

    

  

    
      
          
            
  # Troubleshooting FAQ

## Make errors

### dep: command not found

`
/bin/bash: dep: command not found
make: *** [.deps] Error 127
`

If you get the above error, you need to add $GOPATH/bin to your PATH. A quick fix is to run export PATH=$GOPATH/bin:$PATH.
See the Go language documentation for [workspaces](https://golang.org/doc/code.html#Workspaces) and [GOPATH](https://golang.org/doc/code.html#GOPATH) for a more indepth documentation.

### undefined: Asset

`
server/kolide/emails.go:90:23: undefined: Asset
make: *** [fleet] Error 2
`

If you get an undefined: Asset error it is likely because you did not run make generate before make build. See [Building the Code](https://github.com/kolide/fleet/blob/master/docs/development/building-the-code.md) for additional documentation on compiling the fleet binary.



            

          

      

      

    

  

    
      
          
            
  ## Setting up a Linux Development Environment

### Install some dependencies

sudo apt-get install xzip gyp libjs-underscore libuv1-dev dep11-tools deps-tools-cli

### Create a temp directory, download and place the node and golang bins

`
mkdir tmp
cd tmp
`

#### install node and yarn

`
wget https://nodejs.org/dist/v9.4.0/node-v9.4.0-linux-x64.tar.xz
xz -d node-v9.4.0-linux-x64.tar.xz
tar -xf node-v9.4.0-linux-x64.tar
sudo cp -rf node-v9.4.0-linux-x64/bin /usr/local/
sudo cp -rf node-v9.4.0-linux-x64/include /usr/local
sudo cp -rf node-v9.4.0-linux-x64/lib /usr/local
sudo cp -rf node-v9.4.0-linux-x64/share /usr/local
npm install -g yarn
`

#### install go

`
wget https://dl.google.com/go/go1.9.3.linux-amd64.tar.gz
sudo tar -C /usr/local -xzf go1.9.3.linux-amd64.tar.gz
export PATH=$PATH:/usr/local/go/bin:~/go/bin/
`

#### clean-up temp directory

`
cd ..
rm -rf tmp
`

### Clone and build depenencies

`
mkdir -p ~/go/src/github.com/kolide/
git clone https://github.com/kolide/fleet.git
cd fleet
make deps
make generate
make build
sudo cp build/fleet /usr/bin/fleet
`



            

          

      

      

    

  

    
      
          
            
  
Releasing Fleet


	Update the [CHANGELOG](/CHANGELOG.md) with the changes that have been made since the last Fleet release.


	Tag and push the new release in Git:




` shell
git tag <VERSION>
git push origin <VERSION>
`


	Build the new binary bundle (ensure working tree is clean because this will effect the version string built into the binary):




` shell
make binary-bundle
`


	Create a new release on the [GitHub releases page](https://github.com/kolide/fleet/releases). Select the newly pushed tag (GitHub should say “Existing tag”). Use the version number as the release title. Use the below template for the release description (replace items in <> with the appropriate values):




<COPY FROM CHANGELOG>

### Upgrading

Please visit our [update guide](https://github.com/kolide/fleet/blob/master/docs/infrastructure/updating-fleet.md) for upgrade instructions.

### Documentation

Documentation for this release can be found at https://github.com/kolide/fleet/blob/<VERSION>/docs/README.md

### Binary Checksum

`
sha256sum fleet.zip
<HASH VALUE>  fleet.zip
`



Upload the fleet.zip binary bundle and click “Publish Release”.


	Push the new version to Docker Hub (ensure working tree is clean because this will effect the version string built into the binary):




` shell
make docker-push-release
`


	Announce the release in the #kolide channel of [osquery Slack](https://osquery.slack.com/join/shared_invite/zt-h29zm0gk-s2DBtGUTW4CFel0f0IjTEw#/).








            

          

      

      

    

  

    
      
          
            
  
Testing

## Full test suite

To execute all of the tests that CI will execute, run the following from the root of the repository:

`
make test
`

It is a good idea to run make test before submitting a Pull Request.

#### Go unit tests

To run all Go unit tests, run the following:

`
make test-go
`

### Database Tests

To run database tests set environment variables as follows.

`
export MYSQL_PORT_3306_TCP_ADDR=192.168.99.100
export MYSQL_TEST=1
`

### Email Tests

To run email related unit tests using MailHog set the following environment
variable.

`
export MAIL_TEST=1
`

#### JavaScript unit tests

To run all JavaScript unit tests, run the following:

`
make test-js
`

#### Go linters

To run all Go linters and static analyzers, run the following:

`
make lint-go
`

# Integration Tests

By default, tests that require external dependecies like Mysql or Redis are skipped. The tests can be enabled by setting MYSQL_TEST=true and REDIS_TEST=true environment variables. MYSQL will try to connect with the following credentials.
`
user        = "kolide"
password    = "kolide"
database    = "kolide"
host        = "127.0.0.1"
`
Redis tests expect a redis instance at 127.0.0.1:6379.

Both the Redis and MySQL tests will also be automatically enabled with Docker links. You can check out the CircleCI configuration file(circle.yml) for an example of how to use Docker links to run integration tests.
#### JavaScript linters

To run all JavaScript linters and static analyzers, run the following:

`
make lint-js
`

#### Viewing test coverage

When you run make test or make test-go from the root of the repository, test coverage reports are generated in every subpackage. For example, the server subpackage will have a coverage report generated in ./server/server.cover

To explore a test coverage report on a line-by-line basis in the browser, run the following:

`bash
# substitute ./datastore/datastore.cover, etc
go tool cover -html=./server/server.cover
`

To view test a test coverage report in a terminal, run the following:

`bash
# substitute ./datastore/datastore.cover, etc
go tool cover -func=./server/server.cover
`

### Email

#### Testing email using MailHog

To intercept sent emails while running a Fleet development environment, make sure that you’ve set the SMTP address to <docker host ip>:1025 and leave the username and password blank. Then, visit <docker host ip>:8025 in a web browser to view the [MailHog](https://github.com/mailhog/MailHog) UI.

For example, if docker is running natively on your localhost, then your mail settings should look something like:

```yaml
mail:

address: localhost:1025


```

localhost:1025 is the default configuration. You can use fleet config_dump to see the values which Fleet is using given your configuration.





            

          

      

      

    

  

    
      
          
            
  
Infrastructure Documentation

Kolide Fleet is an infrastructure instrumentation application which has it’s own infrastructure dependencies and requirements. The infrastructure documentation contains documents on the following topics:

## Deploying and configuring osquery


	For information on installing osquery on hosts that you own, see our [Adding Hosts To Fleet](./adding-hosts-to-fleet.md) document, which complements existing [osquery documentation](https://osquery.readthedocs.io/en/stable/).


	To add hosts to Fleet, you will need to provide a minimum set of configuration to the osquery agent on each host. These configurations are defined in the aforementioned [Adding Hosts To Fleet](./adding-hosts-to-fleet.md) document. If you’d like to further customize the osquery configurations and options, this can be done via fleetctl. You can find more documentation on this feature in the [fleetctl documentation](../cli/file-format.md#osquery-configuration-options).


	To manage osquery configurations at your organization, we strongly suggest using some form of configuration management tooling. For more information on configuration management, see the [Managing Osquery Configurations](./managing-osquery-configurations.md) document.




## Installing Fleet and its dependencies

The Fleet server has a few dependencies. To learn more about installing the Fleet server and it’s dependencies, see the [Installing Fleet](./installing-fleet.md) guide.

## Managing a Fleet server

We’re prepared a brief guide to help you manage and maintain your Fleet server. Check out the guide for setting up and running [Fleet on Ubuntu](./fleet-on-ubuntu.md) and [Fleet on CentOS](./fleet-on-centos.md).

For more information, you can also read the [Configuring The Fleet Binary](./configuring-the-fleet-binary.md) guide for information on how to configure and customize Fleet for your organization.

## Working with osquery logs

Fleet allows users to schedule queries, curate packs, and generate a lot of osquery logs. For more information on how you can access these logs as well as examples on what you can do with them, see the [Working With Osquery Logs](./working-with-osquery-logs.md) documentation.

## Troubleshooting & FAQ

Check out the [Frequently Asked Questions](./faq.md), which include troubleshooting steps for the most common issues experience by Fleet users.

## Security

Fleet developers have documented how Fleet handles the [OWASP Top 10](./owasp-top-10.md).





            

          

      

      

    

  

    
      
          
            
  # Adding Hosts To Fleet

Kolide Fleet is powered by the open source osquery tool. To connect a host to Kolide Fleet, you have two general options. You can install the osquery binaries on your hosts via the packages distributed at https://osquery.io/downloads or you can use the [Kolide Osquery Launcher](https://github.com/kolide/launcher). The Launcher is a light wrapper that aims to make running and deploying osquery easier by adding a few features and minimizing the configuration interface. Some features of The Launcher are:


	Secure autoupdates to the latest stable osqueryd


	Remote communication via a strongly-typed, versioned, modern gRPC server API


	a curated kolide_best_practices table which includes a curated set of standards for the modern enterprise




The Launcher also contains robust tooling to help you generate packages for your environment that are designed to work together with Kolide Fleet. For specific documentation on using Launcher with Fleet, see the section below called “Kolide Osquery Launcher”.

If you’d like to use the native osqueryd binaries to connect to Fleet, this is enabled by using osquery’s TLS API plugins that are principally documented on the official osquery wiki: http://osquery.readthedocs.io/en/stable/deployment/remote/. These plugins are very customizable and thus have a large configuration surface. Configuring osqueryd to communicate with Fleet is documented below in the “Native Osquery TLS Plugins” section.

## Kolide Osquery Launcher

We provide compiled releases of the launcher for all supported platforms. Those can be found [here](https://github.com/kolide/launcher/releases). But if you’d like to compile from source, the instructions are [here](https://github.com/kolide/fleet/tree/master/docs/development).

#### Connecting a single Launcher to Fleet

To directly execute the launcher binary without having to mess with packages, invoke the binary with just a few flags:


	–hostname: the hostname of the gRPC server for your environment


	–root_directory: the location of the local database, pidfiles, etc.


	–enroll_secret: the enroll secret to authenticate hosts with Fleet
(retrieve from Fleet UI or fleetctl get enroll_secret)




```
./build/launcher

–hostname=fleet.acme.net:443 –root_directory=$(mktemp -d) –enroll_secret=32IeN3QLgckHUmMD3iW40kyLdNJcGzP5


```

You may also need to define the –insecure and/or –insecure_grpc flag. If you’re running Fleet locally, include –insecure because your TLS certificate will not be signed by a valid CA.

#### Generating packages

The Launcher also provides easy, robust tooling for creating packages that you can distribute across your fleet:

```
$ make package-builder
$./build/package-builder make

–hostname=fleet.acme.net:443 –enroll_secret=32IeN3QLgckHUmMD3iW40kyLdNJcGzP5


```

As you can see, to generate a Launcher package, you need only call package-builder make with two command-line arguments:


	–hostname: the hostname of the gRPC server for your environment


	–enroll_secret: the enroll secret to authenticate hosts with Fleet
(retrieve from Fleet UI or fleetctl get enroll_secret)




You can also add the –mac_package_signing_key flag to define the name of the macOS package signing key name that you’d like to use to sign the macOS packages. For example:

`
--mac_package_signing_key="Developer ID Installer: Acme Inc (ABCDEF123456)"
`

If you want to generate a package for local testing, you can call package-builder make with the –insecure flag as well and the auto-run command in the resultant packages will include –insecure as well.

## Native Osquery TLS Plugins

You can find various ways to install osquery on a variety of platforms at https://osquery.io/downloads. Once you have installed osquery, you need to do two things:

#### Set an environment variable with an agent enrollment secret

The enrollment secret is a value that osquery provides to authenticate with Fleet. There are a few ways you can set the enrollment secret on the hosts which you control. You can either set the value as:


	an value of an environment variable (a common name is OSQUERY_ENROLL_SECRET)


	the content of a local file (a common path is /etc/osquery/enrollment_secret)




The value of the environment variable or content of the file should be a secret shared between the osqueryd client and the Fleet server. This is basically osqueryd’s passphrase which it uses to authenticate with Fleet, convincing Fleet that it is actually one of your hosts. The passphrase could be whatever you’d like, but it would be prudent to have the passphrase long, complex, mixed-case, etc. When you launch the Fleet server, you should specify this same value.

If you use an environment variable for this, you can specify it with the –enroll_secret_env flag when you launch osqueryd. If you use a local file for this, you can specify it’s path with the –enroll_secret_path flag.

To retrieve the enroll secret, use the “Add New Host” dialog in the Fleet UI or
fleetctl get enroll_secret).

If your organization has a robust internal public key infrastructure (PKI) and you already deploy TLS client certificates to each host to uniquely identify them, then osquery supports an advanced authentication mechanism which takes advantage of this. Fleet can be fronted with a proxy that will perform the TLS client authentication.

#### Deploy the TLS certificate that osquery will use to communicate with Fleet

When Fleet uses a self-signed certificate, osquery agents will need a copy of that certificate in order to authenticate the Fleet server. If clients connect directly to the Fleet server, you can download the certificate through the Fleet UI. From the main dashboard (/hosts/manage), click “Add New Host” and “Fetch Kolide Certificate”. If Fleet is running behind a load-balancer that terminates TLS, you will have to talk to your system administrator about where to find this certificate.

It is important that the CN of this certificate matches the hostname or IP that osqueryd clients will use to connect.

Specify the path to this certificate with the –tls_server_certs flag when you launch osqueryd.

## Launching osqueryd

Assuming that you are deploying your enrollment secret in the file /etc/osquery/enroll_secret and your osquery server certificate is at /etc/osquery/kolide.crt, you could copy and paste the following command with the following flags (be sure to replace kolide.acme.net with the hostname or IP of your Fleet installation):

```
sudo osqueryd

–enroll_secret_path=/etc/osquery/enroll_secret –tls_server_certs=/etc/osquery/kolide.crt –tls_hostname=kolide.acme.net –host_identifier=uuid –enroll_tls_endpoint=/api/v1/osquery/enroll –config_plugin=tls –config_tls_endpoint=/api/v1/osquery/config –config_refresh=10 –disable_distributed=false –distributed_plugin=tls –distributed_interval=10 –distributed_tls_max_attempts=3 –distributed_tls_read_endpoint=/api/v1/osquery/distributed/read –distributed_tls_write_endpoint=/api/v1/osquery/distributed/write –logger_plugin=tls –logger_tls_endpoint=/api/v1/osquery/log –logger_tls_period=10


```

If your osquery server certificate is deployed to a path that is not /etc/osquery/kolide.crt, be sure to update the –tls_server_certs flag. Similarly, if your enrollment secret is in an environment variable that is not called OSQUERY_ENROLL_SECRET, then be sure to update the –enroll_secret_env environment variable. If your enroll secret is defined in a local file, specify the file’s path with the –enroll_secret_path flag instead of using the –enroll_secret_env flag.

### Using a flag file to manage flags

For your convenience, osqueryd supports putting all of your flags into a single file. We suggest deploying this file to /etc/osquery/kolide.flags. If you’ve deployed the appropriate osquery flags to that path, you could simply launch osquery via:

`
osqueryd --flagfile=/etc/osquery/kolide.flags
`

## Enrolling multiple macOS hosts

If you’re managing an enterprise environment with multiple Mac devices, you likely have an enterprise deployment tool like [Munki](https://www.munki.org/munki/) or [Jamf Pro](https://www.jamf.com/products/jamf-pro/) to deliver software to your mac fleet. You can deploy osqueryd and enroll all your macs into Fleet using your software management tool of choice.

First, [download](https://osquery.io/downloads/) and import the osquery package into your software management repository. You can also use the community supported [autopkg recipe](https://github.com/autopkg/keeleysam-recipes/tree/master/osquery)
to keep osqueryd updated.

Next, you will have to create an enrollment package to get osqueryd running and talking to Fleet. Specifically, you’ll have to create a custom package because you have to provide specific information about your Fleet deployment. To make this as easy as possible, we’ve created a Makefile to help you build a macOS enrollment package.

First, download the Fleet repository from GitHub and navigate to the tools/mac directory of the repository.

Next, you’ll have to edit the config.mk file. You’ll find all of the necessary information by clicking “Add New Host” in your Fleet server.



	Set the KOLIDE_HOSTNAME variable to the FQDN of your Fleet server.


	Set the ENROLL_SECRET variable to the enroll secret you got from Fleet.


	
	Paste the contents of the Fleet TLS certificate after the following line:
	`
define KOLIDE_TLS_CERTIFICATE
`












Note that osqueryd requires a full certificate chain, even for certificates which might be trusted by your keychain. The “Fetch Kolide Certificate” button in the Add New Host screen will attempt to fetch the full chain for you.

Once you’ve configured the config.mk file with the correct variables, you can run make in the tools/mac directory. Running make will create a new kolide-enroll.pkg file which you can import into your software repository and deploy to your mac fleet.

The enrollment package must installed after the osqueryd package, and will install a LaunchDaemon to keep the osqueryd process running.

## Multiple Enroll Secrets

Multiple enroll secrets can be set to allow different groups of hosts to
authenticate with Fleet. When a host enrolls, the corresponding enroll secret is
recorded and can be used to segment hosts.

To set the enroll secret, use the fleetctl tool to apply an [enroll secret spec](../cli/file-format.md#enroll-secrets)



            

          

      

      

    

  

    
      
          
            
  
Configuring The Fleet Binary

For information on how to run the fleet binary, detailed usage information can be found by running fleet –help. This document is a more detailed version of the information presented in the help output text. If you prefer to use a CLI instead of a web browser, we hope that you like the binary interface to the Fleet application!

## High-level configuration overview

To get the most out of running the Fleet server, it is helpful to establish a mutual understanding of what the desired architecture looks like and what it’s trying to accomplish.

Your Fleet server’s two main purposes are:


	To serve as your [osquery TLS server](https://osquery.readthedocs.io/en/stable/deployment/remote/)


	To serve the [Fleet web application](https://kolide.com/fleet), which allows you to manage osquery configuration, query hosts, perform interesting analytics, etc.




The Fleet server allows you persist configuration, manage users, etc. Thus, it needs a database. Fleet uses MySQL and requires you to supply configurations to connect to a MySQL server. Fleet also uses Redis to perform some more high-speed data access action throughout the lifecycle of the application (for example, distributed query result ingestion). Thus, Fleet also requires that you supply Redis connention configurations.

Since Fleet is a web application, when you run Fleet there are some other configurations that are worth defining, such as:


	The TLS certificates that Fleet should use to terminate TLS.


	The [JWT](https://jwt.io/) Key which is used to sign and verify session tokens.




Since Fleet is an osquery TLS server, you are also able to define configurations that can customize your experience there, such as:


	The destination of the osquery status and result logs on the local filesystem


	Various details about the refresh/check-in intervals for your hosts




## Commands

The fleet binary contains several “commands”. Similarly to how git has many commands (git status, git commit, etc), the fleet binary accepts the following commands:


	fleet prepare db


	fleet serve


	fleet version


	fleet config_dump




## Options

### How do you specify options?

In order of precedence, options can be specified via:


	A configuration file (in YAML format)


	Environment variables


	Command-line flags




For example, all of the following ways of launching Fleet are equivalent:

#### Using only CLI flags

```
$ /usr/bin/fleet serve

–mysql_address=127.0.0.1:3306 –mysql_database=kolide –mysql_username=root –mysql_password=toor –redis_address=127.0.0.1:6379 –server_cert=/tmp/server.cert –server_key=/tmp/server.key –logging_json –auth_jwt_key=changeme


```

#### Using only environment variables

```
$ KOLIDE_MYSQL_ADDRESS=127.0.0.1:3306

KOLIDE_MYSQL_DATABASE=kolide KOLIDE_MYSQL_USERNAME=root KOLIDE_MYSQL_PASSWORD=toor KOLIDE_REDIS_ADDRESS=127.0.0.1:6379 KOLIDE_SERVER_CERT=/tmp/server.cert KOLIDE_SERVER_KEY=/tmp/server.key KOLIDE_LOGGING_JSON=true KOLIDE_AUTH_JWT_KEY=changeme /usr/bin/fleet serve


```

#### Using a config file

```
$ echo ‘
mysql:

address: 127.0.0.1:3306
database: kolide
username: root
password: toor

	redis:
	address: 127.0.0.1:6379

	server:
	cert: /tmp/server.cert
key: /tmp/server.key

	logging:
	json: true

	auth:
	jwt_key: changeme

‘ > /tmp/kolide.yml
$ fleet serve –config /tmp/kolide.yml
```

### What are the options?

Note that all option names can be converted consistently from flag name to environment variable and visa-versa. For example, the –mysql_address flag would be the KOLIDE_MYSQL_ADDRESS. Further, specifying the mysql_address option in the config would follow the pattern:

```
mysql:

address: 127.0.0.1:3306


```

Basically, just capitalize the option and prepend KOLIDE_ to it in order to get the environment variable. The conversion works the same the opposite way.

#### MySQL

##### mysql_address

The address of the MySQL server which Fleet should connect to. Include the hostname and port.


	Default value: localhost:3306


	Environment variable: KOLIDE_MYSQL_ADDRESS


	Config file format:


```
mysql:

address: localhost:3306


```








##### mysql_database

The name of the MySQL database which Fleet will use.


	Default value: kolide


	Environment variable: KOLIDE_MYSQL_DATABASE


	Config file format:


```
mysql:

database: kolide


```








##### mysql_username

The username to use when connecting to the MySQL instance.


	Default value: kolide


	Environment variable: KOLIDE_MYSQL_USERNAME


	Config file format:


```
mysql:

username: kolide


```








##### mysql_password

The password to use when connecting to the MySQL instance.


	Default value: kolide


	Environment variable: KOLIDE_MYSQL_PASSWORD


	Config file format:


```
mysql:

password: kolide


```








##### mysql_tls_ca

The path to a PEM encoded certificate of MYSQL’s CA for client certificate authentication.


	Default value: none


	Environment variable: KOLIDE_MYSQL_TLS_CA


	Config file format:


```
mysql:

tls_ca: /path/to/server-ca.pem


```








##### mysql_tls_cert

The path to a PEM encoded certificate use for tls authentication.


	Default value: none


	Environment variable: KOLIDE_MYSQL_TLS_CERT


	Config file format:


```
mysql:

tls_cert: /path/to/certificate.pem


```








##### mysql_tls_key

The path to a PEM encoded private key use for tls authentication.


	Default value: none


	Environment variable: KOLIDE_MYSQL_TLS_KEY


	Config file format:


```
mysql:

tls_key: /path/to/key.pem


```








##### mysql_tls_config

The tls value in a MYSQL DSN. Can be true,`false`,`skip-verify` or the CN value of the certificate.


	Default value: none


	Environment variable: KOLIDE_MYSQL_TLS_CONFIG


	Config file format:


```
mysql:

tls_config: true


```








##### mysql_tls_server_name

The server name or IP address used by the client certificate.


	Default value: none


	Environment variable: KOLIDE_MYSQL_TLS_SERVER_NAME


	Config file format:


```
mysql:

servername: 127.0.0.1


```








##### mysql_max_open_conns

Maximum open connections to database


	Default value: 50


	Environment variable: KOLIDE_MYSQL_MAX_OPEN_CONNS


	Config file format:


```
mysql:

max_open_conns: 50


```








##### mysql_max_idle_conns

Maximum idle connections to database. This value should be equal to or less than mysql_max_open_conns


	Default value: 50


	Environment variable: KOLIDE_MYSQL_MAX_IDLE_CONNS


	Config file format:


```
mysql:

max_idle_conns: 50


```








##### conn_max_lifetime

Maximum amount of time, in seconds, a connection may be reused.


	Default value: 0 (Unlimited)


	Environment variable: KOLIDE_MYSQL_CONN_MAX_LIFETIME


	Config file format:


```
mysql:

conn_max_lifetime: 50


```








#### Redis

##### redis_address

The address of the Redis server which Fleet should connect to. Include the hostname and port.


	Default value: localhost:6379


	Environment variable: KOLIDE_REDIS_ADDRESS


	Config file format:


```
redis:

address: 127.0.0.1:7369


```








##### redis_password

The password to use when connecting to the Redis instance.


	Default value: <empty>


	Environment variable: KOLIDE_REDIS_PASSWORD


	Config file format:


```
redis:

password: foobar


```








##### redis_database

The database to use when connecting to the Redis instance.


	Default value: 0


	Environment variable: KOLIDE_REDIS_DATABASE


	Config file format:

```
redis:

database: 14


```





#### Server

##### server_address

The address to serve the Fleet webserver.


	Default value: 0.0.0.0:8080


	Environment variable: KOLIDE_SERVER_ADDRESS


	Config file format:


```
server:

address: 0.0.0.0:443


```








##### server_cert

The TLS cert to use when terminating TLS.


	Default value: ./tools/osquery/kolide.crt


	Environment variable: KOLIDE_SERVER_CERT


	Config file format:


```
server:

cert: /tmp/kolide.crt


```








##### server_key

The TLS key to use when terminating TLS.


	Default value: ./tools/osquery/kolide.key


	Environment variable: KOLIDE_SERVER_KEY


	Config file format:


```
server:

key: /tmp/kolide.key


```








##### server_tls

Whether or not the server should be served over TLS.


	Default value: true


	Environment variable: KOLIDE_SERVER_TLS


	Config file format:


```
server:

tls: false


```








##### server_tls_compatibility

Configures the TLS settings for compatibility with various user agents. Options are modern and intermediate. These correspond to the compatibility levels [defined by the Mozilla OpSec team](https://wiki.mozilla.org/Security/Server_Side_TLS)


	Default value: modern


	Environment variable: KOLIDE_SERVER_TLS_COMPATIBILITY


	Config file format:


```
server:

tls_compatibility: intermediate


```








##### server_url_prefix

Sets a URL prefix to use when serving the Fleet API and frontend. Prefixes should be in the form /apps/fleet (no trailing slash).

Note that some other configurations may need to be changed when modifying the URL prefix. In particular, URLs that are provided to osquery via flagfile, the configuration served by Fleet, the URL prefix used by fleetctl, and the redirect URL set with an SSO Identity Provider.


	Default value: Empty (no prefix set)


	Environment variable: KOLIDE_SERVER_URL_PREFIX


	Config file format:


```
server:

url_prefix: /apps/fleet


```








#### Auth

##### auth_jwt_key

The [JWT](https://jwt.io/) key to use when signing and validating session keys. If this value is not specified the Fleet server will fail to start and a randomly generated key will be provided for use.


	Default value: None


	Environment variable: KOLIDE_AUTH_JWT_KEY


	Config file format:


```
auth:

jwt_key: JVnKw7CaUdJjZwYAqDgUHVYP


```








#####   auth_bcrypt_cost

The bcrypt cost to use when hashing user passwords.


	Default value: 12


	Environment variable: KOLIDE_AUTH_BCRYT_COST


	Config file format:


```
auth:

bcrypt_cost: 14


```








##### auth_salt_key_size

The key size of the salt which is generated when hashing user passwords.


	Default value: 24


	Environment variable: KOLIDE_AUTH_SALT_KEY_SIZE


	Config file format:


```
auth:

salt_key_size: 36


```








#### App

##### app_token_key_size

Size of generated app tokens.


	Default value: 24


	Environment variable: KOLIDE_APP_TOKEN_KEY_SIZE


	Config file format:


```
app:

token_key_size: 36


```








##### app_invite_token_validity_period

How long invite tokens should be valid for.


	Default value: 5 days


	Environment variable: KOLIDE_APP_TOKEN_VALIDITY_PERIOD


	Config file format:


```
app:

invite_token_validity_period: 1d


```








#### Session

##### session_key_size

The size of the session key.


	Default value: 64


	Environment variable: KOLIDE_SESSION_KEY_SIZE


	Config file format:


```
session:

key_size: 48


```








##### session_duration

The amount of time that a session should last for.


	Default value: 90 days


	Environment variable: KOLIDE_SESSION_DURATION


	Config file format:


```
session:

duration: 30d


```








#### Osquery

##### osquery_node_key_size

The size of the node key which is negotiated with osqueryd clients.


	Default value: 24


	Environment variable: KOLIDE_OSQUERY_NODE_KEY_SIZE


	Config file format:


```
osquery:

node_key_size: 36


```








##### osquery_label_update_interval

The interval at which Fleet will ask osquery agents to update their results for label queries.

Setting this to a higher value can reduce baseline load on the Fleet server in larger deployments.


	Default value: 1h


	Environment variable: KOLIDE_OSQUERY_LABEL_UPDATE_INTERVAL


	Config file format:


```
osquery:

label_update_interval: 30m


```








##### osquery_detail_update_interval

The interval at which Fleet will ask osquery agents to update host details (such as uptime, hostname, network interfaces, etc.)

Setting this to a higher value can reduce baseline load on the Fleet server in larger deployments.


	Default value: 1h


	Environment variable: KOLIDE_OSQUERY_DETAIL_UPDATE_INTERVAL


	Config file format:


```
osquery:

detail_update_interval: 30m


```








##### osquery_status_log_plugin

Which log output plugin should be used for osquery status logs received from clients.

Options are filesystem, firehose, kinesis, pubsub, and stdout.


	Default value: filesystem


	Environment variable: KOLIDE_OSQUERY_STATUS_LOG_PLUGIN


	Config file format:


```
osquery:

status_log_plugin: firehose


```








##### osquery_result_log_plugin

Which log output plugin should be used for osquery result logs received from clients.

Options are filesystem, firehose, kinesis, pubsub, and stdout.


	Default value: filesystem


	Environment variable: KOLIDE_OSQUERY_RESULT_LOG_PLUGIN


	Config file format:


```
osquery:

result_log_plugin: firehose


```








##### osquery_status_log_file

DEPRECATED: Use filesystem_status_log_file.

The path which osquery status logs will be logged to.


	Default value: /tmp/osquery_status


	Environment variable: KOLIDE_OSQUERY_STATUS_LOG_FILE


	Config file format:


```
osquery:

status_log_file: /var/log/osquery/status.log


```








##### osquery_result_log_file

DEPRECATED: Use filesystem_result_log_file.

The path which osquery result logs will be logged to.


	Default value: /tmp/osquery_result


	Environment variable: KOLIDE_OSQUERY_RESULT_LOG_FILE


	Config file format:


```
osquery:

result_log_file: /var/log/osquery/result.log


```








##### osquery_enable_log_rotation

DEPRECATED: Use fileystem_enable_log_rotation.

This flag will cause the osquery result and status log files to be automatically
rotated when files reach a size of 500 Mb or an age of 28 days.


	Default value: false


	Environment variable: KOLIDE_OSQUERY_ENABLE_LOG_ROTATION


	Config file format:

```
osquery:

enable_log_rotation: true


```





#### Logging (Fleet server logging)

##### logging_debug

Whether or not to enable debug logging.


	Default value: false


	Environment variable: KOLIDE_LOGGING_DEBUG


	Config file format:


```
logging:

debug: true


```








##### logging_json

Whether or not to log in JSON.


	Default value: false


	Environment variable: KOLIDE_LOGGING_JSON


	Config file format:


```
logging:

json: true


```








##### logging_disable_banner

Whether or not to log the welcome banner.


	Default value: false


	Environment variable: KOLIDE_LOGGING_DISABLE_BANNER


	Config file format:


```
logging:

disable_banner: true


```








#### Filesystem

##### filesystem_status_log_file

This flag only has effect if osquery_status_log_plugin is set to filesystem (the default value).

The path which osquery status logs will be logged to.


	Default value: /tmp/osquery_status


	Environment variable: KOLIDE_FILESYSTEM_STATUS_LOG_FILE


	Config file format:


```
filesystem:

status_log_file: /var/log/osquery/status.log


```








##### filesystem_result_log_file

This flag only has effect if osquery_result_log_plugin is set to filesystem (the default value).

The path which osquery result logs will be logged to.


	Default value: /tmp/osquery_result


	Environment variable: KOLIDE_FILESYSTEM_RESULT_LOG_FILE


	Config file format:


```
filesystem:

result_log_file: /var/log/osquery/result.log


```








##### filesystem_enable_log_rotation

This flag only has effect if osquery_result_log_plugin or osquery_status_log_plugin are set to filesystem (the default value).

This flag will cause the osquery result and status log files to be automatically
rotated when files reach a size of 500 Mb or an age of 28 days.


	Default value: false


	Environment variable: KOLIDE_FILESYSTEM_ENABLE_LOG_ROTATION


	Config file format:

```
filesystem:

enable_log_rotation: true


```





##### filesystem_enable_log_compression

This flag only has effect if filesystem_enable_log_rotation is set to true.

This flag will cause the rotated logs to be compressed with gzip.


	Default value: false


	Environment variable: KOLIDE_FILESYSTEM_ENABLE_LOG_COMPRESSION


	Config file format:

```
filesystem:

enable_log_compression: true


```





#### Firehose

##### firehose_region

This flag only has effect if osquery_status_log_plugin is set to firehose.

AWS region to use for Firehose connection


	Default value: none


	Environment variable: KOLIDE_FIREHOSE_REGION


	Config file format:


```
firehose:

region: ca-central-1


```








##### firehose_access_key_id

This flag only has effect if osquery_status_log_plugin or osquery_result_log_plugin are set to firehose.

If firehose_access_key_id and firehose_secret_access_key are omitted, Fleet will try to use [AWS STS](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html) credentials.

AWS access key ID to use for Firehose authentication.


	Default value: none


	Environment variable: KOLIDE_FIREHOSE_ACCESS_KEY_ID


	Config file format:


```
firehose:

access_key_id: AKIAIOSFODNN7EXAMPLE


```








##### firehose_secret_access_key

This flag only has effect if osquery_status_log_plugin or osquery_result_log_plugin are set to firehose.

AWS secret access key to use for Firehose authentication.


	Default value: none


	Environment variable: KOLIDE_FIREHOSE_SECRET_ACCESS_KEY


	Config file format:


```
firehose:

secret_access_key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY


```








##### firehose_sts_assume_role_arn

This flag only has effect if osquery_status_log_plugin or
osquery_result_log_plugin are set to firehose.

AWS STS role ARN to use for Firehose authentication.


	Default value: none


	Environment variable: KOLIDE_FIREHOSE_STS_ASSUME_ROLE_ARN


	Config file format:


```
firehose:

sts_assume_role_arn: arn:aws:iam::1234567890:role/firehose-role


```








##### firehose_status_stream

This flag only has effect if osquery_status_log_plugin is set to firehose.

Name of the Firehose stream to write osquery status logs received from clients.


	Default value: none


	Environment variable: KOLIDE_FIREHOSE_STATUS_STREAM


	Config file format:


```
firehose:

status_stream: osquery_status


```








The IAM role used to send to Firehose must allow the following permissions on
the stream listed:


	firehose:DescribeDeliveryStream


	firehose:PutRecordBatch




##### firehose_result_stream

This flag only has effect if osquery_result_log_plugin is set to firehose.

Name of the Firehose stream to write osquery result logs received from clients.


	Default value: none


	Environment variable: KOLIDE_FIREHOSE_RESULT_STREAM


	Config file format:


```
firehose:

result_stream: osquery_result


```








The IAM role used to send to Firehose must allow the following permissions on
the stream listed:


	firehose:DescribeDeliveryStream


	firehose:PutRecordBatch




#### Kinesis

##### kinesis_region

This flag only has effect if osquery_status_log_plugin is set to kinesis.

AWS region to use for Kinesis connection


	Default value: none


	Environment variable: KOLIDE_KINESIS_REGION


	Config file format:


```
kinesis:

region: ca-central-1


```








##### kinesis_access_key_id

This flag only has effect if osquery_status_log_plugin or
osquery_result_log_plugin are set to kinesis.

If kinesis_access_key_id and kinesis_secret_access_key are omitted, Fleet
will try to use
[AWS STS](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html)
credentials.

AWS access key ID to use for Kinesis authentication.


	Default value: none


	Environment variable: KOLIDE_KINESIS_ACCESS_KEY_ID


	Config file format:


```
kinesis:

access_key_id: AKIAIOSFODNN7EXAMPLE


```








##### kinesis_secret_access_key

This flag only has effect if osquery_status_log_plugin or
osquery_result_log_plugin are set to kinesis.

AWS secret access key to use for Kinesis authentication.


	Default value: none


	Environment variable: KOLIDE_KINESIS_SECRET_ACCESS_KEY


	Config file format:


```
kinesis:

secret_access_key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY


```








##### kinesis_sts_assume_role_arn

This flag only has effect if osquery_status_log_plugin or
osquery_result_log_plugin are set to kinesis.

AWS STS role ARN to use for Kinesis authentication.


	Default value: none


	Environment variable: KOLIDE_KINESIS_STS_ASSUME_ROLE_ARN


	Config file format:


```
kinesis:

sts_assume_role_arn: arn:aws:iam::1234567890:role/kinesis-role


```








##### kinesis_status_stream

This flag only has effect if osquery_status_log_plugin is set to kinesis.

Name of the Kinesis stream to write osquery status logs received from clients.


	Default value: none


	Environment variable: KOLIDE_KINESIS_STATUS_STREAM


	Config file format:


```
kinesis:

status_stream: osquery_status


```








The IAM role used to send to Kinesis must allow the following permissions on
the stream listed:


	kinesis:DescribeStream


	kinesis:PutRecords




##### kinesis_result_stream

This flag only has effect if osquery_result_log_plugin is set to kinesis.

Name of the Kinesis stream to write osquery result logs received from clients.


	Default value: none


	Environment variable: KOLIDE_KINESIS_RESULT_STREAM


	Config file format:


```
kinesis:

result_stream: osquery_result


```








The IAM role used to send to Kinesis must allow the following permissions on
the stream listed:


	kinesis:DescribeStream


	kinesis:PutRecords




#### PubSub

### pubsub_project

This flag only has effect if osquery_status_log_plugin is set to pubsub.

The identifier of the Google Cloud project containing the pubsub topics to
publish logs to.

Note that the pubsub plugin uses [Application Default Credentials (ADCs)](https://cloud.google.com/docs/authentication/production)
for authentication with the service.


	Default value: none


	Environment variable: KOLIDE_PUBSUB_PROJECT


	Config file format:

```
pubsub:

project: my-gcp-project


```





### pubsub_result_topic

This flag only has effect if osquery_status_log_plugin is set to pubsub.

The identifier of the pubsub topic that client results will be published to.


	Default value: none


	Environment variable: KOLIDE_PUBSUB_RESULT_TOPIC


	Config file format:

```
pubsub:

result_topic: osquery_result


```





### pubsub_status_topic

This flag only has effect if osquery_status_log_plugin is set to pubsub.

The identifier of the pubsub topic that osquery status logs will be published to.


	Default value: none


	Environment variable: KOLIDE_PUBSUB_STATUS_TOPIC


	Config file format:

```
pubsub:

status_topic: osquery_status


```









            

          

      

      

    

  

    
      
          
            
  # FAQ for using/operating Fleet

## Can multiple instances of the Fleet server be run behind a load-balancer?

Yes. Fleet scales horizontally out of the box as long as all of the Fleet servers are connected to the same MySQL and Redis instances.

Note that osquery logs will be distributed across the Fleet servers.

## Where are my query results?

### Live Queries

Live query results (executed in the web UI or fleetctl query) are pushed directly to the UI where the query is running. The results never go to a file unless you as the user manually save them.

### Scheduled Queries

Scheduled query results (queries that are scheduled to run in Packs) are typically sent to the Fleet server, and will be available on the filesystem of the server at the path configurable by [–osquery_result_log_file](./configuring-the-fleet-binary.md#osquery_result_log_file). This defaults to /tmp/osquery_result.

It is possible to configure osqueryd to log query results outside of Fleet. For results to go to Fleet, the –logger_plugin flag must be set to tls.

### Troubleshooting

Expecting results, but not seeing anything in the logs?


	Try scheduling a query that always returns results (eg. SELECT * FROM time).


	Check whether the query is scheduled in differential mode. If so, new results will only be logged when the result set changes.


	Ensure that the query is scheduled to run on the intended platforms, and that the tables queried are supported by those platforms.


	Use live query to SELECT * FROM osquery_schedule to check whether the query has been scheduled on the host.


	Look at the status logs provided by osquery. In a standard configuration these are available on the filesystem of the Fleet server at the path configurable by [–filesystem_status_log_file](./configuring-the-fleet-binary.md#filesystem_status_log_file). This defaults to /tmp/osquery_status. The host will output a status log each time it executes the query.




## Why aren’t my live queries being logged?

Live query results are never logged to the filesystem of the Fleet server. See [Where are my query results?](#where-are-my-query-results).

## Why aren’t my osquery agents connecting to Fleet?

This can be caused by a variety of problems. The best way to debug is usually to add –verbose –tls_dump to the arguments provided to osqueryd and look at the logs for the server communication.

### Common problems


	Connection refused: The server is not running, or is not listening on the address specified. Is the server listening on an address that is available from the host running osquery? Do you have a load balancer that might be blocking connections? Try testing with curl.


	No node key returned: Typically this indicates that the osquery client sent an incorrect enroll secret that was rejected by the server. Check what osquery is sending by looking in the logs near this error.


	certificate verify failed: See [How do I fix “certificate verify failed” errors from osqueryd](#how-do-i-fix-certificate-verify-failed-errors-from-osqueryd).


	bad record MAC: When generating your certificate for your Fleet server, ensure you set the hostname to the FQDN or the IP of the server. This error is common when setting up Fleet servers and accepting defaults when generating certificates using openssl.




## How do I fix “certificate verify failed” errors from osqueryd?

Osquery requires that all communication between the agent and Fleet are over a secure TLS connection. For the safety of osquery deployments, there is no (convenient) way to circumvent this check.


	Try specifying the path to the full certificate chain used by the server using the –tls_server_certs flag in osqueryd. This is often unnecessary when using a certificate signed by an authority trusted by the system, but is mandatory when working with self-signed certificates. In all cases it can be a useful debugging step.


	Ensure that the CNAME on the certificate matches the address at which the server is being accessed. If I try connect osquery via https://localhost:443, but my certificate is for https://fleet.example.com, the verification will fail.


	Is Fleet behind a load-balancer? Ensure that if the load-balancer is terminating TLS that this is the certificate provided to osquery.


	Does the certificate verify with curl? Try curl -v -X POST https://kolideserver:port/api/v1/osquery/enroll.




## What do I do about “too many open files” errors?

This error usually indicates that the Fleet server has run out of file descriptors. Fix this by increasing the ulimit on the Fleet process. See the LimitNOFILE setting in the [example systemd unit file](./systemd.md) for an example of how to do this with systemd.

## I upgraded my database, but Fleet is still running slowly. What could be going on?

This could be caused by a mismatched connection limit between the Fleet server and the MySQL server that prevents Fleet from fully utilizing the database. First [determine how many open connections your MySQL server supports](https://dev.mysql.com/doc/refman/8.0/en/too-many-connections.html). Now set the [–mysql_max_open_conns](./configuring-the-fleet-binary.md#mysql_max_open_conns) and [–mysql_max_idle_conns](./configuring-the-fleet-binary.md#mysql_max_idle_conns) flags appropriately.

## How do I monitor a Fleet server?

Fleet provides a /healthz endpoint. If you query it with curl it will return an HTTP Status code. 200 OK means everything is alright. 500 Internal Server Error means Fleet is having trouble communicating with MySQL or Redis. Check the Fleet logs for additional details.

The /metrics endpoint exposes data ready to be ingested by Prometheus.

## Why is the “Add User” button disabled?

The “Add User” button is disabled if SMTP (email) has not been configured for the Fleet server. Currently, there is no way to add new users without email capabilities.

One way to hack around this is to use a simulated mailserver like [Mailhog](https://github.com/mailhog/MailHog). You can retrieve the email that was “sent” in the Mailhog UI, and provide users with the invite URL manually.

## Is Fleet available as a SaaS product?

Kolide does not host a SaaS version of Fleet. We offer [Kolide Cloud](https://kolide.com) which is a separate product providing the capabilities of Fleet along with alerting and insights, all hosted in a secure SaaS platform.

## How do I get support for working with Fleet?

For bug reports, please use the [Github issue tracker](https://github.com/kolide/fleet/issues).

For questions and discussion, please join us in the #kolide channel of [osquery Slack](https://osquery.slack.com/join/shared_invite/zt-h29zm0gk-s2DBtGUTW4CFel0f0IjTEw#/).



            

          

      

      

    

  

    
      
          
            
  
Kolide Fleet on CentOS

In this guide, we’re going to install Kolide Fleet and all of it’s application dependencies on a CentOS 7.1 server. Once we have Fleet up and running, we’re going to install osquery on that same CentOS 7.1 host and enroll it in Fleet. This should give you a good understanding of both how to install Fleet as well as how to install and configure osquery such that it can communicate with Fleet.

## Setting up a host

Acquiring a CentOS host to use for this guide is largely an exercise for the reader. If you don’t have an CentOS host readily available, feel free to use [Vagrant](https://www.vagrantup.com/). In a clean, temporary directory, you can run the following to create a vagrant box, start it, and log into it:

```
$ echo ‘Vagrant.configure(“2”) do |config|

config.vm.box = “bento/centos-7.1”
config.vm.network “forwarded_port”, guest: 8080, host: 8080

end’ > Vagrantfile
$ vagrant up
$ vagrant ssh
```

## Installing Fleet

To install Fleet, run the following:

`
$ wget https://github.com/kolide/fleet/releases/latest/download/fleet.zip
$ unzip fleet.zip 'linux/*' -d fleet
$ sudo cp fleet/linux/fleet* /usr/bin/
`

## Installing and configuring dependencies

### MySQL

To install the MySQL server files, run the following:

`
$ wget https://repo.mysql.com/mysql57-community-release-el7.rpm
$ sudo rpm -i mysql57-community-release-el7.rpm
$ sudo yum update
$ sudo yum install mysql-server
`

To start the MySQL service:

`
$ sudo systemctl start mysqld
`

Let’s set a password for the MySQL root user.
MySQL creates an initial temporary root password which you can find in  `/var/log/mysqld.log` you will need this password to change the root password.

Connect to MySQL
`
$ mysql -u root -p
`
When prompted enter in the temporary password from `/var/log/mysqld.log`

Change root password, in this case we will use toor?Fl33t as default password validation requires a more complex password.

For MySQL 5.7.6 and newer, use the following command:

`
mysql> ALTER USER "root"@"localhost" IDENTIFIED BY "toor?Fl33t";
`

For MySQL 5.7.5 and older, use:

`
mysql> SET PASSWORD FOR "root"@"localhost" = PASSWORD("toor?Fl33t");
`
Now issue the command
`
mysql> flush privileges;
`
And exit MySQL
`
mysql> exit
`
Stop MySQL and start again
`
$ sudo mysqld stop
$ sudo systemctl start mysqld
`
It’s also worth creating a MySQL database for us to use at this point. Run the following to create the kolide database in MySQL. Note that you will be prompted for the password you created above.

`
$ echo 'CREATE DATABASE kolide;' | mysql -u root -p
`

### Redis

To install the Redis server files, run the following:

`
$ sudo rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
$ sudo yum install redis
`

To start the Redis server in the background, you can run the following:

`
$ sudo service redis start
`

## Running the Fleet server

Now that we have installed Fleet, MySQL, and Redis, we are ready to launch Fleet! First, we must “prepare” the database. We do this via fleet prepare db:

```
$ /usr/bin/fleet prepare db

–mysql_address=127.0.0.1:3306 –mysql_database=kolide –mysql_username=root –mysql_password=toor?Fl33t


```

The output should look like:

`
Migrations completed.
`

Before we can run the server, we need to generate some TLS keying material. If you already have tooling for generating valid TLS certificates, then you are encouraged to use that instead. You will need a TLS certificate and key for running the Fleet server. If you’d like to generate self-signed certificates, you can do this via:

`
$ openssl genrsa -out /tmp/server.key 4096
$ openssl req -new -key /tmp/server.key -out /tmp/server.csr
$ openssl x509 -req -days 366 -in /tmp/server.csr -signkey /tmp/server.key -out /tmp/server.cert
`

You should now have three new files in /tmp:


	/tmp/server.cert


	/tmp/server.key


	/tmp/server.csr




Now we are ready to run the server! We do this via fleet serve:

```
$ /usr/bin/fleet serve

–mysql_address=127.0.0.1:3306 –mysql_database=kolide –mysql_username=root –mysql_password=toor –redis_address=127.0.0.1:6379 –server_cert=/tmp/server.cert –server_key=/tmp/server.key –logging_json

`
You will be prompted to add a value for `–auth_jwt_key```. A randomly generated key will be suggested, you can simply add the flag with the suggested key.

Now, if you go to https://localhost:8080 in your local browser, you should be redirected to https://localhost:8080/setup where you can create your first Fleet user account.

Running Fleet with systemd

See [systemd](./systemd.md) for documentation on running fleet as a background process and managing the fleet server logs.

Installing and running osquery

> Note that this whole process is outlined in more detail in the [Adding Hosts To Fleet](./adding-hosts-to-fleet.md) document. The steps are repeated here for the sake of a continuous tutorial.

To install osquery on CentOS, you can run the following:

`
$ sudo rpm -ivh https://osquery-packages.s3.amazonaws.com/centos7/noarch/osquery-s3-centos7-repo-1-0.0.noarch.rpm
$ sudo yum install osquery
`

You will need to set the osquery enroll secret and osquery server certificate. If you head over to the manage hosts page on your Fleet instance (which should be https://localhost:8080/hosts/manage), you should be able to click “Add New Hosts” and see a modal like the following:

![Add New Host](../images/add-new-host-modal.png)

If you select “Fetch Kolide Certificate”, your browser will download the appropriate file to your downloads directory (to a file probably called localhost-8080.pem). Copy this file to your CentOS host at /var/osquery/server.pem.

You can also select “Reveal Secret” on that modal and the enrollment secret for your Fleet instance will be revealed. Copy that text and create a file with it’s contents:

`
$ echo 'LQWzGg9+/yaxxcBUMY7VruDGsJRYULw8' | sudo tee /var/osquery/enroll_secret
`

Now you’re ready to run the osqueryd binary:

```
sudo /usr/bin/osqueryd 


–enroll_secret_path=/var/osquery/enroll_secret –tls_server_certs=/var/osquery/server.pem –tls_hostname=localhost:8080 –host_identifier=uuid –enroll_tls_endpoint=/api/v1/osquery/enroll –config_plugin=tls –config_tls_endpoint=/api/v1/osquery/config –config_refresh=10 –disable_distributed=false –distributed_plugin=tls –distributed_interval=3 –distributed_tls_max_attempts=3 –distributed_tls_read_endpoint=/api/v1/osquery/distributed/read –distributed_tls_write_endpoint=/api/v1/osquery/distributed/write –logger_plugin=tls –logger_tls_endpoint=/api/v1/osquery/log –logger_tls_period=10




```

If you go back to https://localhost:8080/hosts/manage, you should have a host successfully enrolled in Fleet! For information on how to further use the Fleet application, see the [Application Documentation](../application/README.md).

 # Deploying Fleet on Kubernetes

In this guide, we’re going to install Fleet and all of it’s application dependencies on a Kubernetes cluster. Kubernetes is a container orchestration tool that was open sourced by Google in 2014.

Installing Infrastructure Dependencies

For the sake of this tutorial, we will use Helm, the Kubernetes Package Manager, to install MySQL and Redis. If you would like to use Helm and you’ve never used it before, you must run the following to initialize your cluster:

`
helm init
`

MySQL

The MySQL that we will use for this tutorial is not replicated and it is not Highly Available. If you’re deploying Fleet on a Kubernetes managed by a cloud provider (GCP, Azure, AWS, etc), I suggest using their MySQL product if possible as running HA MySQL in Kubernetes can be difficult. To make this tutorial cloud provider agnostic however, we will use a non-replicated instance of MySQL.

To install MySQL from Helm, run the following command. Note that there are some options that are specified. These options basically just enumerate that:

	There should be a kolide database created

	The default user’s username should be kolide


```
helm install 


–name fleet-database –set mysqlUser=kolide,mysqlDatabase=kolide stable/mysql




```

This helm package will create a Kubernetes Service which exposes the MySQL server to the rest of the cluster on the following DNS address:

`
fleet-database-mysql:3306
`

We will use this address when we configure the Kubernetes deployment and database migration job, but if you’re not using a Helm-installed MySQL in your deployment, you’ll have to change this in your Kubernetes config files.

Database Migrations

The last step is to run the Fleet database migrations on your new MySQL server. To do this, run the following:

`
kubectl create -f ./examples/kubernetes/fleet-migrations.yml
`

In Kubernetes, you can only run a job once. If you’d like to run it again (i.e.: you’d like to run the migrations again using the same file), you must delete the job before re-creating it. To delete the job and re-run it, you can run the following commands:

`
kubectl delete -f ./examples/kubernetes/fleet-migrations.yml
kubectl create -f ./examples/kubernetes/fleet-migrations.yml
`

Redis

```
helm install 


–name fleet-cache –set persistence.enabled=false stable/redis




```

This helm package will create a Kubernetes Service which exposes the Redis server to the rest of the cluster on the following DNS address:

`
fleet-cache-redis:6379
`

We will use this address when we configure the Kubernetes deployment, but if you’re not using a Helm-installed Redis in your deployment, you’ll have to change this in your Kubernetes config files.

Setting Up and Installing Fleet

> ### A note on container versions
>
> The Kubernetes files referenced by this tutorial use the Kolide Fleet container tagged at 1.0.5. The tag is something that should be consistent across the migration job and the deployment specification. If you use these files, I suggest creating a workflow that allows you templatize the value of this tag. For further reading on this topic, see the [Kubernetes documentation](https://kubernetes.io/docs/concepts/configuration/overview/#container-images).

Create Server Secrets

It should be noted that by default Kubernetes stores secret data in plaintext in etcd. Using an alternative secret storage mechanism is outside the scope of this tutorial, but let this serve as a reminder to secure the storage of your secrets.

TLS Certificate & Key

Consider using Lets Encrypt to easily generate your TLS certificate. For examples on using lego, the command-line Let’s Encrypt client, see the [documentation](https://github.com/xenolf/lego#cli-example). Consider the following example, which may be useful if you’re a GCP user:

```
GCE_PROJECT=”acme-gcp-project” GCE_DOMAIN=”acme-co” 



	lego –email=”username@acme.co” 
	-x “http-01” -x “tls-sni-01” –domains=”fleet.acme.co” –dns=”gcloud” –accept-tos run








```

If you’re going the route of a more traditional CA-signed certificate, you’ll have to generate a TLS key and a CSR (certificate signing request):

`
openssl req -new -newkey rsa:2048 -nodes -keyout tls.key -out tls.csr
`

Now you’ll have to give this CSR to a Certificate Authority, and they will give you a file called tls.crt. We will then have to add the key and certificate as Kubernetes secrets.

`
kubectl create secret tls fleet-tls --key=./tls.key --cert=./tls.crt
`

JWT Auth Key

This is the key that will be used to sign and validate the JWT tokens that are used as the web session key.

`
echo -n "some really secure string" > ./build/fleet-server-auth-key
kubectl create secret generic fleet-server-auth-key --from-file=./build/fleet-server-auth-key
`

Deploying Fleet

First we must deploy the instances of the Fleet webserver. The Fleet webserver is described using a Kubernetes deployment object. To create this deployment, run the following:

`
kubectl apply -f ./examples/kubernetes/fleet-deployment.yml
`

You should be able to get an instance of the webserver running via kubectl get pods and you should see the following logs:

`
$ kubectl logs fleet-webserver-9bb45dd66-zxnbq
ts=2017-11-16T02:48:38.440578433Z component=service method=ListUsers user=none err=null took=2.350435ms
ts=2017-11-16T02:48:38.441148166Z transport=https address=0.0.0.0:443 msg=listening
`

Deploying the Load Balancer

Now that the Fleet server is running on our cluster, we have to expose the Fleet webservers to the internet via a load balancer. To create a Kubernetes Service of type LoadBalancer, run the following:

`
kubectl apply -f ./examples/kubernetes/fleet-service.yml
`

Configure DNS

Finally, we must configure a DNS address for the external IP address that we now have for the Fleet load balancer. Run the following to show some high-level information about the service:

`
kubectl get services fleet-loadbalancer
`

In this output, you should see an “EXTERNAL-IP” column. If this column says <pending>, then give it a few minutes. Sometimes acquiring a public IP address can take a moment.

Once you have the public IP address for the load balancer, create an A record in your DNS server of choice. You should now be able to browse to your Fleet server from the internet!

Kolide Fleet on Ubuntu

In this guide, we’re going to install Kolide Fleet and all of it’s application dependencies on an Ubuntu 16.04 LTS server. Once we have Fleet up and running, we’re going to install osquery on that same Ubuntu 16.04 host and enroll it in Fleet. This should give you a good understanding of both how to install Fleet as well as how to install and configure osquery such that it can communicate with Fleet.

Setting up a host

Acquiring an Ubuntu host to use for this guide is largely an exercise for the reader. If you don’t have an Ubuntu host readily available, feel free to use [Vagrant](https://www.vagrantup.com/). In a clean, temporary directory, you can run the following to create a vagrant box, start it, and log into it:

```
$ echo ‘Vagrant.configure(“2”) do |config|


config.vm.box = “bento/ubuntu-16.04”
config.vm.network “forwarded_port”, guest: 8080, host: 8080




end’ > Vagrantfile
$ vagrant up
$ vagrant ssh
```

Installing Fleet

To install Fleet, run the following:

`
$ wget https://github.com/kolide/fleet/releases/latest/download/fleet.zip
$ unzip fleet.zip 'linux/*' -d fleet
$ sudo cp fleet/linux/fleet /usr/bin/fleet
$ sudo cp fleet/linux/fleetctl /usr/bin/fleetctl
`

Installing and configuring dependencies

MySQL

To install the MySQL server files, run the following:

`
$ sudo apt-get install mysql-server -y
`

When asked for MySQL’s root password, enter toor for the sake of this tutorial if you are having trouble thinking of a better password for the MySQL root user. If you decide to set your own password, be mindful that you will need to substitute it every time toor is used in this document.

After installing mysql-server, the mysqld server should be running. You can verify this by running the following:

`
$ ps aux | grep mysqld
mysql 13158 3.1 14.4 1105320 146408 ? Ssl 21:36 0:00 /usr/sbin/mysqld
`

It’s also worth creating a MySQL database for us to use at this point. Run the following to create the kolide database in MySQL. Note that you will be prompted for the password you created above.

`
$ echo 'CREATE DATABASE kolide;' | mysql -u root -p
`

Redis

To install the Redis server files, run the following:

`
$ sudo apt-get install redis-server -y
`

To start the Redis server in the background, you can run the following:

`
$ sudo redis-server &
`

Note that this isn’t a very robust way to run a Redis server. Digital Ocean has written a very nice [community tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-redis-on-ubuntu-16-04) on installing and running Redis in a more productionalized way.

Running the Fleet server

Now that we have installed Fleet, MySQL, and Redis, we are ready to launch Fleet! First, we must “prepare” the database. We do this via fleet prepare db:

```
$ /usr/bin/fleet prepare db 


–mysql_address=127.0.0.1:3306 –mysql_database=kolide –mysql_username=root –mysql_password=toor




```

The output should look like:

Migrations completed

Before we can run the server, we need to generate some TLS keying material. If you already have tooling for generating valid TLS certificates, then you are encouraged to use that instead. You will need a TLS certificate and key for running the Fleet server. If you’d like to generate self-signed certificates, you can do this via the following steps (note - you will be asked for severl bits of information, including name, contact info, and location, in order to generate the certificate):

`
$ openssl genrsa -out /tmp/server.key 4096
$ openssl req -new -key /tmp/server.key -out /tmp/server.csr
$ openssl x509 -req -days 366 -in /tmp/server.csr -signkey /tmp/server.key -out /tmp/server.cert
`

You should now have three new files in /tmp:

	/tmp/server.cert

	/tmp/server.key

	/tmp/server.csr

Now we are ready to run the server! We do this via fleet serve:

```
$ /usr/bin/fleet serve 


–mysql_address=127.0.0.1:3306 –mysql_database=kolide –mysql_username=root –mysql_password=toor –redis_address=127.0.0.1:6379 –server_cert=/tmp/server.cert –server_key=/tmp/server.key –logging_json




```
You will be prompted to add a value for –auth_jwt_key. A randomly generated key will be suggested, you can simply add the flag with the sugested key.

Now, if you go to https://localhost:8080 in your local browser, you should be redirected to https://localhost:8080/setup where you can create your first Fleet user account.

Running Fleet with systemd

See [systemd](./systemd.md) for documentation on running fleet as a background process and managing the fleet server logs.

Installing and running osquery

> Note that this whole process is outlined in more detail in the [Adding Hosts To Fleet](./adding-hosts-to-fleet.md) document. The steps are repeated here for the sake of a continuous tutorial.

To install osquery on Ubuntu, you can run the following:

`
$ export OSQUERY_KEY=1484120AC4E9F8A1A577AEEE97A80C63C9D8B80B
$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys $OSQUERY_KEY
$ sudo add-apt-repository 'deb [arch=amd64] https://pkg.osquery.io/deb deb main'
$ sudo apt-get update
$ sudo apt-get install osquery
`

If you’re having trouble with the above steps, check the official [downloads](https://osquery.io/downloads) link for a direct download of the .deb.

You will need to set the osquery enroll secret and osquery server certificate. If you head over to the manage hosts page on your Fleet instance (which should be https://localhost:8080/hosts/manage), you should be able to click “Add New Hosts” and see a modal like the following:

![Add New Host](../images/add-new-host-modal.png)

If you select “Fetch Fleet Certificate”, your browser will download the appropriate file to your downloads directory (to a file probably called localhost-8080.pem). Copy this file to your Ubuntu host at /var/osquery/server.pem.

You can also select “Reveal Secret” on that modal and the enrollment secret for your Fleet instance will be revealed. Copy that text and create a file with it’s contents:

`
$ echo 'LQWzGg9+/yaxxcBUMY7VruDGsJRYULw8' | sudo tee /var/osquery/enroll_secret
`

Now you’re ready to run the osqueryd binary:

```
sudo /usr/bin/osqueryd 


–enroll_secret_path=/var/osquery/enroll_secret –tls_server_certs=/var/osquery/server.pem –tls_hostname=localhost:8080 –host_identifier=hostname –enroll_tls_endpoint=/api/v1/osquery/enroll –config_plugin=tls –config_tls_endpoint=/api/v1/osquery/config –config_refresh=10 –disable_distributed=false –distributed_plugin=tls –distributed_interval=3 –distributed_tls_max_attempts=3 –distributed_tls_read_endpoint=/api/v1/osquery/distributed/read –distributed_tls_write_endpoint=/api/v1/osquery/distributed/write –logger_plugin=tls –logger_tls_endpoint=/api/v1/osquery/log –logger_tls_period=10




```

If you go back to https://localhost:8080/hosts/manage, you should have a host successfully enrolled in Fleet! For information on how to further use the Fleet application, see the [Application Documentation](../application/README.md).

Installing Fleet

The Fleet application is distributed as a single static binary. This binary serves:

	The Fleet web interface

	The Fleet application API endpoints

	The osquery TLS server API endpoints

All of these are served via a built-in HTTP server, so there is no need for complex web server configurations. Once you’ve installed the fleet binary and it’s infrastructure dependencies as illustrated below, refer to the [Configuring The Fleet Binary](./configuring-the-fleet-binary.md) documentation for information on how to use and configure the Fleet application.

Installing the Fleet binary

Because everyone’s infrastructure is different, there are a multiple options available for installing the Fleet binary.

Docker container

Pull the latest Fleet docker image:

`
docker pull kolide/fleet
`

For more information on using Fleet, refer to the [Configuring The Fleet Binary](./configuring-the-fleet-binary.md) documentation.

Raw binaries

Download the latest raw Fleet binaries:

`
curl -LO https://github.com/kolide/fleet/releases/latest/download/fleet.zip
`

Unzip the binaries for your platform:

```
# For a Darwin compatible binary
unzip fleet.zip ‘darwin/*’ -d fleet
./fleet/darwin/fleet_darwin_amd64 –help

# For a Linux compatible binary
unzip fleet.zip ‘linux/*’ -d fleet
./fleet/linux/fleet_linux_amd64 –help
```

For more information on using Fleet, refer to the [Configuring The Fleet Binary](./configuring-the-fleet-binary.md) documentation.

Infrastructure Dependencies

Fleet currently has two infrastructure dependencies in addition to the fleet web server itself. Those dependencies are MySQL and Redis.

MySQL

Fleet uses MySQL extensively as it’s main database. Many cloud providers (such as [AWS](https://aws.amazon.com/rds/mysql/) and [GCP](https://cloud.google.com/sql/)) host reliable MySQL services which you may consider for this purpose. A well supported MySQL [Docker container](https://hub.docker.com/_/mysql/) also exists if you would rather run MySQL in a container. For more information on how to configure the fleet binary to use the correct MySQL instance, see the [Configuring The Fleet Binary](./configuring-the-fleet-binary.md) document.

Fleet requires at least MySQL version 5.7.

For host expiry configuration, the [event scheduler](https://dev.mysql.com/doc/refman/5.7/en/events-overview.html) must be enabled. This can be enabled via the command line, configuration file, or a user with the required privileges.

Redis

Fleet uses Redis to ingest and queue the results of distributed queries, cache data, etc. Many cloud providers (such as [AWS](https://aws.amazon.com/elasticache/) and [GCP](https://console.cloud.google.com/launcher/details/click-to-deploy-images/redis)) host reliable Redis services which you may consider for this purpose. A well supported Redis [Docker container](https://hub.docker.com/_/redis/) also exists if you would rather run Redis in a container. For more information on how to configure the fleet binary to use the correct Redis instance, see the [Configuring The Fleet Binary](./configuring-the-fleet-binary.md) document.

Managing Osquery Configurations

We recommend that you use an infrastructure configuration management tool to manage these osquery configurations consistently across your environment. If you’re unsure about what configuration management tools your organization uses, contact your company’s system administrators. If you are evaluating new solutions for this problem, the founders of Kolide have successfully managed configurations in large production environments using [Chef](https://www.chef.io/chef/) and [Puppet](https://puppet.com/).

 # OWASP Top 10

The Fleet community follows best practices when coding. Here are some of the ways we mitigate against the OWASP top 10 issues:

Describe your secure coding practices, including code reviews, use of static/dynamic security testing tools, 3rd party scans/reviews.

	Every piece of code that is merged into Fleet is reviewed by at least one other engineer before merging. We don’t use any security-specific testing tools.

	The server backend is built in Golang, which (besides for language-level vulnerabilities) eliminates buffer overflow and other memory related attacks.

	We use standard library cryptography wherever possible, and all cryptography is using well-known standards.

SQL Injection
- All queries are parameterized with MySQL placeholders, so MySQL itself guards against SQL injection and the Fleet code does not need to perform any escaping.

Broken authentication – authentication, session management flaws that compromise passwords, keys, session tokens etc.
Passwords
- Fleet supports SAML auth which means that it can be configured such that it never sees passwords.
- Passwords are never stored in plaintext in the database. We store a bcrypt`ed hash of the password along with a randomly generated salt. The `bcrypt iteration count and salt key size are admin-configurable.
Authentication tokens
- The size and expiration time of session tokens is admin-configurable. See https://github.com/kolide/fleet/blob/master/docs/infrastructure/configuring-the-fleet-binary.md#session_duration.
- It is possible to revoke all session tokens for a user by forcing a password reset.

Sensitive data exposure – encryption in transit, at rest, improperly implemented APIs.
- By default, all traffic between user clients (such as the web browser and fleetctl) and the Fleet server is encrypted with TLS. By default, all traffic between osqueryd clients and the Fleet server is encrypted with TLS. Fleet does not encrypt any data at rest (however a user could separately configure encryption for the MySQL database and logs that Fleet writes).

Broken access controls – how restrictions on what authorized users are allowed to do/access are enforced.
- Each session is associated with a viewer context that is used to determine the access granted to that user. Access controls can easily be applied as middleware in the routing table, so the access to a route is clearly defined in the same place where the route is attached to the server see https://github.com/kolide/fleet/blob/master/server/service/handler.go#L114-L189.

Cross-site scripting – ensure an attacker can’t execute scripts in the user’s browser
- We render the frontend with React and benefit from built-in XSS protection in React’s rendering. This is not sufficient to prevent all XSS, so we also follow additional best practices as discussed in https://stackoverflow.com/a/51852579/491710.

Components with known vulnerabilities – prevent the use of libraries, frameworks, other software with existing vulnerabilities.
- We rely on Github’s automated vulnerability checks, community news, and direct reports to discover vulnerabilities in our dependencies. We endeavor to fix these immediately and would almost always do so within a week of a report.

 ## Running with systemd

Once you’ve verified that you can run fleet in your shell, you’ll likely want to keep fleet running in the background and after the server reboots. To do that we recommend using [systemd](https://coreos.com/os/docs/latest/getting-started-with-systemd.html).

Below is a sample unit file.

```
[Unit]
Description=Kolide Fleet
After=network.target

[Service]
LimitNOFILE=8192
ExecStart=/usr/local/bin/fleet serve 


–mysql_address=127.0.0.1:3306 –mysql_database=kolide –mysql_username=root –mysql_password=toor –redis_address=127.0.0.1:6379 –server_cert=/tmp/server.cert –server_key=/tmp/server.key –auth_jwt_key=this_string_is_not_secure_replace_it –logging_json




[Install]
WantedBy=multi-user.target
```

Once you created the file, you need to move it to /etc/systemd/system/fleet.service and start the service.

```
sudo mv fleet.service /etc/systemd/system/fleet.service
sudo systemctl start fleet.service
sudo systemctl status fleet.service

sudo journalctl -u fleet.service -f
```

Making changes

Sometimes you’ll need to update the systemd unit file defining the service. To do that, first open /etc/systemd/system/fleet.service in a text editor, and make your modifications.

Then, run

`
sudo systemctl daemon-reload
sudo systemctl restart fleet.service
`

Updating Fleet

This guide explains how to update and run new versions of Fleet. For initial installation instructions, see [Installing Fleet](./installing-fleet.md).

There are two steps to perform a typical Fleet update. If any other steps are required, they will be noted in the release notes.

	[Update the Fleet binary](#updating-the-fleet-binary)

	[Run database migrations](#running-database-migrations)

As with any enterprise software update, it’s a good idea to back up your MySQL data before updating Fleet.

Updating the Fleet binary

Follow the binary update instructions corresponding to the original installation method used to install Fleet.

Raw binaries

Download the latest raw Fleet binaries:

`
curl -O https://github.com/kolide/fleet/releases/latest/download/fleet.zip
`

Unzip the binaries for your platform:

```
# For a Darwin compatible binary
unzip fleet.zip ‘darwin/*’ -d fleet
./fleet/darwin/fleet –help

# For a Linux compatible binary
unzip fleet.zip ‘linux/*’ -d fleet
./fleet/linux/fleet –help
```

Replace the existing Fleet binary with the newly unzipped binary.

Docker container

Pull the latest Fleet docker image:

`
docker pull kolide/fleet
`

Running database migrations

Before running the updated server, perform necessary database migrations. It is always advised to back up the database before running migrations.

Database migrations in Fleet are intended to be run while the server is offline. Osquery is designed to be resilient to short downtime from the server, so no data will be lost from osqueryd clients in this process. Even on large Fleet installations, downtime during migrations is usually only seconds to minutes.

First, take the existing servers offline.

Run database migrations:

`
fleet prepare db
`

Note, if you would like to run this in a script, you can use the –no-prompt option to disable prompting before the migrations.

Start new Fleet server instances:

`
fleet serve
`

 # Working With Osquery Logs

Osquery agents are typically configured to send logs to the Fleet server (–logger_plugin=tls). This is not a requirement, and any other logger plugin can be used even when osquery clients are connecting to the Fleet server to retrieve configuration or run live queries. See the [osquery logging documentation](https://osquery.readthedocs.io/en/stable/deployment/logging/) for more about configuring logging on the agent.

If –logger_plugin=tls is used with osquery clients, the following configuration can be applied on the Fleet server for handling the incoming logs.

Osquery Logging Plugins

Fleet supports the following logging plugins for osquery logs:

	[Filesystem](#filesystem) - Logs are written to the local Fleet server filesystem.

	[Firehose](#firehose) - Logs are written to AWS Firehose streams.

	[Kinesis](#kinesis) - Logs are written to AWS Kinesis streams.

	[PubSub](#pubsub) - Logs are written to Google Cloud PubSub topics.

	[Stdout](#stdout) - Logs are written to stdout.

To set the osquery logging plugins, use the –osquery_result_log_plugin and –osquery_status_log_plugin flags (or [equivalents for environment variables or configuration files](../infrastructure/configuring-the-fleet-binary.md#options)).

Filesystem

The default logging plugin.

	Plugin name: filesystem

	Flag namespace: [filesystem](../infrastructure/configuring-the-fleet-binary.md#filesystem)

With the filesystem plugin, osquery result and/or status logs are written to the local filesystem on the Fleet server. This is typically used with a log forwarding agent on the Fleet server that will push the logs into a logging pipeline. Note that if multiple load-balanced Fleet servers are used, the logs will be load-balanced across those servers (not duplicated).

Firehose

	Plugin name: firehose

	Flag namespace: [firehose](../infrastructure/configuring-the-fleet-binary.md#firehose)

With the Firehose plugin, osquery result and/or status logs are written to [AWS Firehose](https://aws.amazon.com/kinesis/data-firehose/) streams. This is a very good method for aggregating osquery logs into AWS S3 storage.

Note that Firehose logging has limits [discussed in the documentation](https://docs.aws.amazon.com/firehose/latest/dev/limits.html). When Fleet encounters logs that are too big for Firehose, notifications will be output in the Fleet logs and those logs _will not_ be sent to Firehose.

Kinesis

	Plugin name: kinesis

	Flag namespace: [kinesis](../infrastructure/configuring-the-fleet-binary.md#kinesis)

With the Kinesis plugin, osquery result and/or status logs are written to
[AWS Kinesis](https://aws.amazon.com/kinesis/data-streams) streams.

Note that Kinesis logging has limits [discussed in the
documentation](https://docs.aws.amazon.com/kinesis/latest/dev/limits.html).
When Fleet encounters logs that are too big for Kinesis, notifications will be
output in the Fleet logs and those logs _will not_ be sent to Kinesis.

PubSub

	Plugin name: pubsub

	Flag namespace: [pubsub](../infrastructure/configuring-the-fleet-binary.md#pubsub)

With the PubSub plugin, osquery result and/or status logs are written to [PubSub](https://cloud.google.com/pubsub/) topics.

Note that messages over 10MB will be dropped, with a notification sent to the fleet logs, as these can never be processed by PubSub.

Stdout

	Plugin name: stdout

	Flag namespace: [stdout](../infrastructure/configuring-the-fleet-binary.md#stdout)

With the stdout plugin, osquery result and/or status logs are written to stdout
on the Fleet server. This is typically used for debugging or with a log
forwarding setup that will capture and forward stdout logs into a logging
pipeline. Note that if multiple load-balanced Fleet servers are used, the logs
will be load-balanced across those servers (not duplicated).

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

